作者mantour (朱子)
看板Math
标题Re: [代数] 级数的不等式证明
时间Tue Sep 17 10:42:11 2024
※ 引述《Lanjaja ()》之铭言:
: 想问一道不等式证明:
: 设a_1 ≦ a_2 ≦ ... ≦ a_n,a_i不限正负。
: 定义A_k =Σ_(i=1 to k) a_i
: A'_k = Σ_(i=1 to k) a_σ(i)
: σ(i)是i的置换permutation
: 证明对所有的k=1~n,A_k≦A'_k都成立。
: 请问强者应该要怎麽证明这个A_k的性质?
: 感谢回答~
令
S_k={a_i, i=1~k}
S'_k={a_σ(i), i=1~k}
P_k= S_k \ S'_k
Q_k= S'_k \ S_k
则
sum(S_k) - sum(S'_k) = sum(P_k) - sum(Q_k)
n(P_k) = n(Q_k) = k - n(S_k∩S'_k)
对所有 x 属於 P_k 且 y属於Q_k , x≦y
因此 sum(P_k) ≦ n(P_k)*max(P_k) ≦ n(Q_k)*min(Q_k) ≦ sum(Q_k)
=> sum(S_k) ≦ sum(S'_k)
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 220.137.14.92 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Math/M.1726540934.A.519.html
1F:→ musicbox810 : 请问m大S_k \ S'_k的\是什麽符号? 09/17 12:15
2F:推 LPH66 : 集合差, 在前者但不在後者之中的元素 09/17 12:23
3F:→ LPH66 : 有人写减, 也有人写反斜线 09/17 12:23
4F:→ musicbox810 : 谢谢L大的解释 09/17 12:47
5F:→ musicbox810 : 不懂为什麽max(P_k) ≦ min(Q_k)会成立? 09/17 13:15
以c(A)表示A的补集 ( 宇集是 {a_1, ..., a_n} )
P_k = S_k ∩ c(S'_k) => P_k 包含於S_k
Q_k = S'_k ∩ c(S_k) => Q_k 包含於c(S_k)
S_k 其实就是 {a_1,...,a_k}, 而c(S_k)就是 { a_(k+1), ... ,a_n }
因此对所有k, max(S_k) ≦ min(c(S_k))
因此 max(P_k) ≦ max(S_k) ≦ min(c(S_k)) ≦ min(Q_k)
---------------------------------------------------------
换一个方式想
给定任意 k 和 σ
若 a_σ(1) ~ a_σ(k) 中有m个数大於 a_k (0<=m<=k)
就表示 a_σ(k+1) ~ a_σ(n) 中有m个数小於等於 a_k
现在进行以下操作:
把 前面m个大於a_k的数 跟 後面m个小於a_k的数一对一对调
对调之後 a_σ(1) ~ a_σ(k) 的和一定是变小
(当m=0时不做任何事,所以不变)
也就是对调後前k项的和 A''_k <= A'_k
而对调後 a_σ(1) ~ a_σ(k) 全部都小於等於 a_k
因此对调後的前k项就是 a_1 ~ a_k 的permutation
因此 A''_k = A_k
就得到 A_k <= A'_k
6F:推 TimcApple : 设 Sc 为 >k 的元素, 若 P, Q 非空则 09/17 14:31
7F:→ TimcApple : maxP <= maxS = k < k+1 = minSc <= minQ 09/17 14:31
8F:→ mantour : P_k里面全部都是原数列的前k项, Q_k里面全部都是k 09/17 17:11
9F:→ mantour : +1之後的项 09/17 17:11
10F:→ mantour : 所以P_k的任何一个元素都比Q_k的任何一个元素小 09/17 17:12
※ 编辑: mantour (220.137.14.92 台湾), 09/17/2024 20:10:09
11F:→ mantour : 阿 要注明如果有重复项要当大小相同的相异元素 09/19 22:20
12F:推 Vulpix : 如果把排序不等式当作已知来用,第二个数列用1跟0做 09/22 00:21
13F:→ Vulpix : 就可以了。 09/22 00:22