作者Honor1984 (奈何上天造化弄人?)
看板Math
标题Re: [微积] 二项展开式和线性近似之关系
时间Wed Aug 21 03:14:41 2024
※ 引述《saltlake (SaltLake)》之铭言:
: 请问下列二者之间的大小关系怎样确定?
: A = 1 - (1 - a)^n
: B = n*a
: n 是自然数而 a 乃实数
: A < B? 还是 A > B?
: 倘若 (1) 0 <= a <= 1; (2) 1 <= a
f(a) = 1 - (1 - a)^n - na
f(0) = 0
f'(a) = -n[1 - (1 - a)^(n-1)]
当0 <= a <= 1:
f'(a) <= 0 => f(a) <= 0 => A <= B
当a > 1:
f'(a) = -n[1 + (-1)^n |a - 1|^(n-1)]
若n为偶数
则f'(a) = -n[1 + |a - 1|^(n-1)] < 0 => f(0) <= 0 => A <= B
若n为奇数
则f'(a) = -n[1 - |a - 1|^(n-1)]
当0 <= a <= 2:f'(a) <= 0
当a > 2:f'(a) > 0,存在一点a'使得f(a') = 0
所以
当0 <= a <= a',A < B
当a > a',A > B
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 117.56.175.175 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Math/M.1724181283.A.394.html