作者cmrafsts (喵喵)
看板Math
标题Re: [分析] Hermite内插演算法的证明
时间Mon Aug 7 07:01:49 2023
既然你只是要知道爲什麽degeneration law长那样的话...
---------------------------------------------------------------
Let F be a field of characteristic 0, a_1,...,a_n be n different values in F,
m_1+1,...,m_n+1 be n positive integers. Given c_ij values in F where
0 <= j <= m_i. There is a unique polynomial P(x) with degree < N where
N = (m_1+1) + ... + (m_n+1). We claim that P(x) is the one given by Hermite's
algorithm. The algorithm constructs a table T the values of which are given by
values in n small rectangles following degeneration law (DL) and inductively
filling in difference quotients. On the other hand, the values on the top row
are those appearing in the intepolation formula and once given, the whole table
is determined by inductive formulas (IF) and only addition and multiplication
are involved in (IF).
1. Let P(x) be the desired polynomial. We start with N distinct values
b_1,...,b_N and P(b_1),...,P(b_N) to form the table. The accuracy of the
interpolation formula in this case is guaranteed by Newton form.
The value b_1,...,b_N are given by
a_1, a_1+y_11,..., a_1+y_(1m_1), a_2, a_2+y_21,..., a_2+y_{2m_2},...,
a_n, a_n+y_n1,..., a_n+y_(nm_n), regarded as values in the polynomial ring
F[{y_ij}]. The table thus written is denoted by T({y_ij}) with values in the
function field F({y_ij}).
2. We claim that T({y_ij}) has values in F[{y_ij}]. Suppose the top row is
d_0,...,d_(N-1). The interpolation formula is
d_0+d_1(x-b_1)+...+d_(N-1)(x-b_1)...(x-b_(N-1))=P(x). Suppose 0 <= m <= N-1
is the least one such that d_m is not in F[{y_ij}]. We separate P(x) into the
tow parts d_0+...+d_m(x-b_1)...(x-b_m) + higher terms. This is the only way to
decompose P(x) into a multiple of (x-b_1)...(x-b_(m+1)) and a polynomial of
degree atmost m in F({y_ij})[x]. Since P(x) is actually in F[{y_ij}][x], such
decomposition is made within F[{y_ij}]. However, the leading coefficient of
the first part is not in F[{y_ij}] and we get a contraction.
3. We now evaluate at y_ij = 0 for all possible (i,j). The interpolate formula
is d_0(0)+...+d_(N-1)(0)(x-a_1)^(m_1)...(x-a_n)^(m_n)=P(x). The table T(0) is
given by having d_0(0),...,d_(N-1)(0) on the top row and (IF) because a ring
homomorphism preserves (IF). It suffices to check the values in n small
rectangles follow (DL). We call the rth small rectangle T({y_ij})_r and we
are looking at T(0)_r.
4. Consider the problem where we are considering the interpolation with
only conditions on values and higher derivatives at a_r, the table being
T'({y_rj}), and the polynomial solving this problem denoted by P'.
T'(0) follows (DL) because we have Taylor expansion. Since P-P' has vanishing
order at least m_n+1, T({y_ij})_r and T'({y_rj}) differ from terms of degree
at least m_n+1-s > 0 on each entry in the s+1th column. As there are m_n+1
column in that rectangle, T(0)_r=T'(0).
--
第01话 似乎在课堂上听过的样子 第02话 那真是太令人绝望了
第03话 已经没什麽好期望了 第04话 被当、21都是存在的
第05话 怎麽可能会all pass 第06话 这考卷绝对有问题啊
第07话 你能面对真正的分数吗 第08话 我,真是个笨蛋
第09话 这样成绩,教授绝不会让我过的 第10话 再也不依靠考古题
第11话 最後留下的补考 第12话 我最爱的学分
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 160.39.29.33 (美国)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Math/M.1691362921.A.E78.html
※ 编辑: cmrafsts (160.39.29.33 美国), 08/07/2023 07:18:06
1F:推 znmkhxrw : 谢谢c大! 这就是把演算法的general case写成数学式 08/07 19:16
2F:→ znmkhxrw : 然後直接证明符合微分条件吼? 08/07 19:17
3F:→ znmkhxrw : 就是我上一篇的"(2) T(x) 满足微分条件" 08/07 19:17
4F:推 PPguest : 4.看不太懂.请问 T'({y_rj}), P' 到底是什麽?和 08/08 22:59
5F:→ PPguest : T({y_ij}), P 有什麽不同? 08/08 23:00
6F:→ PPguest : 啊没事,我看懂了,T({y_ij})_r和T'({y_rj})是同大小 08/09 10:17
7F:→ PPguest : 的table「方框」 08/09 10:17