作者yueayase (scrya)
看板Math
标题Re: [机统] 右偏分配平均与中位数的关系
时间Sun Feb 19 06:10:58 2023
※ 引述《scitamehtam (scitamehtam)》之铭言:
: 在右偏的机率分配下
: 平均数 > 中位数
: 直观理解是因为极端值
: 对平均数的影响也比较大吗?
: 还是有其他直观的解释呢?
: 有证明吗?
: 谢谢
: ----
: Sent from BePTT on my iPhone 12
https://reurl.cc/pLyO2Q
https://www.tandfonline.com/doi/full/10.1080/10691898.2005.11910556
这结果很多情况都不是对的...
尤其是discrete distribution:
All Poisson distributions have an infinite right tail and positive skew
(equal to ) – yet for more than 30% of parameter values, for example μ =
.75 (Figure 5), the mean is less than the median.
即使是continous distribution:
To construct a multimodal violation, simply take a discrete violation (e.g.,
Figure 2 or Figure 5) and add random normal “noise” to each value of X. The
noise makes the distribution continuous, but if the noise variance is small
there will be little change to the mean, median, mode, or skew
不过...
Unimodal continuous densities are more cooperative. CitationGroeneveld and
Meeden (1977) prove that the skew gives the relative positions of mean,
median and mode for the F, beta, and gamma densities (the gamma includes the
exponential and the chi-square). More generally, CitationMacGillivray (1981)
proves the relationship for a large class of continuous unimodal densities
including the entire Pearson family.
eg: X~ exp(a)
∞ -x/a ∞ -u -u ∞ ∞ -u u u ∞
μ = ∫xe /a dx = a∫ ue du = a(-ue | +∫ e du) = a(-lim ---- -e |)
0 0 0 0 u->∞ e^u 0
1
= a(-lim ----- - (-1)) = a
u->∞ e^u
2 ∞ 2 -x/a 2 ∞ 2 -u 2 2 -u ∞ ∞ -u
E(X ) = ∫ x e /a dx = a ∫ u e du = a (-u e | + 2∫ue du)
0 0
0 0
2 u^2 2E(X)
= a (-lim ---- + ------- )
u->∞ e^u a
2 2
= a (-lim ----- + 2)
u->∞ e^u
2
= 2a
2 2 2 2 2 2
=> σ = E(X )-μ = 2a - a = a
X-μ 3 1 3 2 2 3
skew = E[(------) ] = ------E(X -3X μ+3Xμ -μ )
σ σ^3
1 3 2 2 3
= ------(E(X )-3μE(X ) +3μ E(X)-μ )
σ^3
1 3 3 3 3
= -----(E(X )-6a +3a -a )
a^3
1 3 3
= -----(E(X )-4a )
a^3
3 ∞ 3 -x/a 3 ∞ 3 -u 3 3 -u ∞ ∞ 2 -u
E(X ) = ∫ x e /a dx = a ∫ u e du = a (-u e | + 3∫ u e )
0 0 0 0
3 u^3 3E(X^2)
= a (-lim ----- + --------)
u->∞ e^u a^2
3 6
= a (-lim ------ + 6)
u->∞ e^u
3
= 6a
=> skew = 2 > 0
m -x/a
∫ e /a dx = 1/2
0
-x/a m
=> -e | = 1/2
0
-m/a
=> 1-e = 1/2
=> -m/a = ln(1/2)
=> m = aln2 < alne = a = μ
这个情况下的确skew > 0, μ > m
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 114.47.95.208 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Math/M.1676758261.A.959.html