作者Honor1984 (奈何上天造化弄人?)
看板Math
标题Re: [几何] 三角形内切圆证明
时间Tue Oct 5 15:19:49 2021
※ 引述《goodwang (手牵手一起去奔跑)》之铭言:
: https://i.imgur.com/DjSUNZJ.jpg
: 如图片,要证明线段AR等於线段CQ
: 感谢各位
B过O交AC於W,不难证明出
RW : WQ = (a + b + c) : (a - b + c)
bc/(a + c) = AR + RW
(b + c - a)/2 = WQ + bc/(a + c)
=> AR = bc/(a + c) - [(a + b + c)/(a - b + c)][(b + c - a)/2 - bc/(a + c)]
= 2bc/(a - b + c) - (a + b + c)(b + c - a)/[2(a - b + c)]
= [4bc - (b + c)^2 + a^2]/[2(a - b + c)]
= (a + b - c)/2 = CQ
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 111.243.48.34 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Math/M.1633418391.A.95E.html