作者kilva (嗡嗡)
看板Math
标题Re: [中学] 高中数学关於内外齿轮问题
时间Mon Jun 14 15:05:55 2021
※ 引述《mathshadow (活死人)》之铭言:
: 题目叙述:
: (1)外齿轮半径为3公分
: (2)内齿轮半径为1公分
: (3)假设内、外齿轮中心固定在P点。
: 外齿轮固定不转,内齿轮可以绕P点自由旋转。
: 今有一个半径为1公分的齿轮中心为A(以下通称为齿轮A)
: 嵌在内、外齿轮之间。
: 试问当内齿轮绕P点自转一圈时,A点绕P点转了多少弧度。
: 想请问高手该如何想呢?
设齿轮A绕P点转了t弧度,其转动可想像分成两部分:
齿轮A与内齿轮咬合点不变地绕P点转了t弧度,以及
齿轮A与外齿轮咬合,使其与内齿轮的咬合点偏离3*t/1=3t弧度。
因此,内齿轮共转动t+3t=4t弧度。
当4t=2*pi时,t=pi/2。
故,内齿轮绕P点自转一圈时,A点绕P点转了pi/2。
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 36.225.138.148 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Math/M.1623654358.A.CA8.html
1F:→ mantour : 这样是假设三个圆盘的接触点都无滑动, 相当於 06/14 15:28
2F:→ mantour : 假设三个齿轮上单位弧长上的齿数相同 06/14 15:31