作者Dirichlet ( )
看板Math
标题Re: [分析] 初微(42)
时间Thu Aug 25 08:13:50 2005
※ 引述《TaiwanBank (澳仔金控台湾分行)》之铭言:
: +∞
: 若 ∫ |f(x)| dx < ∞, 请证明:
: -∞
: +∞ +∞
: ∫ f(x) dx = ∫ f(x-1/x) dx.
: -∞ -∞
令 t = x - 1/x => dt = (1 + 1/x^2)dx
x^2 - tx - 1 = 0 => x = [t±√(4+t^2)]/2
1/x^2 = 2/[t^2 + 2 ±t√(4+t^2)]
1 + 1/x^2 = [t^2 + 4 ±t√(4+t^2)] / [t^2 + 2 ±t√(4+t^2)]
取 A = [t^2 + 4 + t√(4+t^2)] / [t^2 + 2 + t√(4+t^2)]
B = [t^2 + 4 - t√(4+t^2)] / [t^2 + 2 - t√(4+t^2)]
直接的计算 => 1/A + 1/B = 1
+oo 1 +oo
∫ f(x-1/x) dx = ∫ f(x-1/x) dx + ∫ f(x-1/x) dx
-oo 0 1
0 -1
+ ∫ f(x-1/x) dx + ∫ f(x-1/x) dx
-1 -oo
0 +oo +oo 0
= ∫f(t)/A dt + ∫f(t)/A dt + ∫f(t)/B dt + ∫f(t)/B dt
-oo 0 0 -oo
+oo
由假设条件可推得上面四个暇积分都收敛, 故 ∫ f(x-1/x) dx 收敛
-oo
0 +oo
= ∫f(t)(1/A + 1/B) dt + ∫f(t)(1/A + 1/B) dt
-oo 0
0 +oo +oo
= ∫f(t) dt + ∫f(t) dt = ∫f(t) dt ... Q.E.D.
-oo 0 -oo
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.219.178.213
1F:推 PttFund:大师真强 m(_ _)m140.112.218.142 08/25
2F:推 gary27:因为它是Dirichlet...orz..140.134.242.144 08/25