作者Dirichlet ( )
看板Math
标题Re: [分析] 初微(2)
时间Fri Aug 19 01:41:36 2005
※ 引述《plover (>//////<)》之铭言:
: ∞ 1
: Consider the series Σ ( ----- - √( ln(1 + 1/n) ) ).
: n=1 √n
: Is it convergent?
原级数收敛 !! 证明之前先给一个事实 ln(1+1/x) < 1/x for any x≧1
故 (1/√n) - √( ln(1 + 1/n) ) > (1/√n) - (1/√n) = 0 for nature number n
因此原级数是正项级数 ... 用极限比较测试与 1/n^(3/2) 作比较
lim {[1-√(nln(1 + 1/n))]/n^(1/2)} / [1/n^(3/2)]
n->oo
= lim {[1-√(nln(1 + 1/n))] / n^(-1)
n->oo
= lim
{(1/2)[nln(1 + 1/n)]^(-1/2)} {[ln(1 + 1/n)] - 1/(n+1)} / [n^(-2)]
n->oo
上色部分 -> 1/2 当 n -> oo, 故仅需考虑
lim {[ln(1 + 1/n)] - 1/(n+1)} / [n^(-2)]
n->oo
= lim [-1/n(n+1) + 1/(n+1)^2] / (-2) n^(-3)
n->oo
= (1/2) lim [1/n(n+1)^2] / n^(-3)
n->oo
= (1/2) lim [n/(n+1)]^2 = 1/2
n->oo
故原极限值 = 1/4 且 Σ 1/n^(3/2) 收敛
故原级数收敛
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.219.178.227