作者PttFund (批踢踢基金只进不出)
看板Math
标题[线代] 线代(1)
时间Sat Jul 23 18:38:02 2005
Let V be a subspace of R^n. A linear transformation
μ: R^n -> R^n is called a projection of R^n on V if
μ(x) in V and x-μ(x) in V^⊥ for every x in R^n.
(a) Let A be a n╳n matrix. Show that μ: R^n -> R^n
defined by μ(x) = Ax for all x in R^n is a projection
of R^n onto C(A), if and only if A^2 = A and A = A^T.
(C(A) = the column space of A.)
(b) What are the eigenvalues and the corresponding
eigenspaces of a projection?
--
我好穷啊,我好缺批币啊
,你有抠抠ㄋㄟ
可怜可怜我吧,施舍一点吧
请到(P)LAY-->(P)AY-->(0)GIVE-->PttFund-->吧
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.218.142
1F:推 waterworld0:耶耶 ~ 感谢哩^^ 210.58.70.170 07/23