作者herstein (两岸终究会统一)
看板Math
标题出一题有去的给大家
时间Wed Jul 20 12:48:23 2005
Denote C([0,1],R) the real-valued continuous function defined on [0,1].
1)Prove that C([0,1],R) is an integral domain.
2)Let x_0 lie in [0,1], Denote I(x_0)={f in C([0,1],R): f(x_0)=0}
Prove that I(x_0) is a maximal ideal of C([0,1],R).
3)Find all it's maximal ideal.
4)Find all it's ideal.
5)We know that the quotient of an integral domain by a maximal ideal
is isomorphic to a field. Prove that
C([0,1],R)/I(x_0) is isomorphic to R.
6)(C([0,1],R),∥∥_∞) is Banach.
7)C([0,1],R)*(the dual space) is isomorphic to the space of functions of
bounded variation on [0,1].
Note that BV[0,1] is a Banach space in which norm is defined by the total
variation of the functions.
8)On C([0,1],R), we define
1
<f,g> = ∫ f(x)g(x)dx,
0
then prove that (C([0,1],R),<,>) is an inner product space and find its
completion.(The completion of that is L^2([0,1])).
8-1)If f is in C([0,1],R), and
1
∫ f(x)x^ndx=0 for all n,
0
then prove that f≡0 on [0,1].
8-2)If f is in L^2([0,1]),
1
∫ f(x)x^ndx=0 for all n,
0
then prove that f = 0 a.e on [0,1].
8-3)Compute the Gram-Schmidt process of {1,x,x^2,...,} in C([-1,1],R).
You can find the orthogonal polynomials are Legendre polynomials.
You can also prove that the set of Legendre polynomials is a basis
for (C([-1,1],R),<,>). You can also find the relation between
the theory of function spaces and the theory of differential equations.
We all know that the legendre polynomials satiesfy
((1-x^2)y')'+n(n+1)y = 0. y(-1)=y(1)=0.
8-4)You can also prove that {1.√2cos(2nπx),√2sin(2nπx)}_{n in |N} is
an orthonomal basis for C([-1,1],R).The Fourier series related to
the the theory of function spaces.
9) Let O([-1,1]) denote the odd continuous functions on [-1,1] and
E([-1,1]) are even continuous functions on [-1,1],
prove that C([-1,1]) = O([-1,1]) ⊕ E([-1,1]).
讲了那麽多,主要是希望给准备数研所的同学一个方向。线代、高微、代数、微方
等等都是彼此相关联的。你们可以藉由做题目中去寻找彼此的关连性。这些题目,
是我用印象给大家的,其中难免有一些疏漏请多包涵。但念数学有一个很重要的能力是
你必须学着去把这些看似不相关的观念统整起来。我最後再举两个例子作为我这篇文章
的结语:如果考虑一个复矩阵A(n*n),与线性微分系统
dx
-- = Ax x(0)=v.(x 在 R^n).
dt
(A不见得可对角化)
则x(t) = exp(tA)v.
在这之中牵扯到几个概念:exp(A)怎麽定义,收敛与否?
exp(tA)的计算就牵扯到Jordan form 的计算。
在(C[0,1],<,>)上我们定义算子A:C[0,1]->C[0,1]为
1 t
A[f](x) = ∫ ∫ f(u)dudt
x 0
那麽 A是定义在 C[0,1]上的线性算子。试证明 A is self-adjoint。
找出A 的eigenvalue以及找出他的spectral 分解。在解这个问题的同时,
就会利用到1)微分方程2)复便函数论(要求出cos(z)的无穷积)。
在解这个问题的过程中,spectral 分解中就内蕴了Fourier theory。
原本当初Fourier也是由此发展出富立业理论的。
由此可知,函数空间的重要性在哪。
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 218.162.246.178
※ 编辑: herstein 来自: 218.162.246.178 (07/20 13:12)
1F:推 PttFund:推!140.112.218.142 07/21