作者PttFund (批踢踢基金只进不出)
看板Math
标题Re: [分析] 初微(15)
时间Sat Jul 16 09:59:41 2005
※ 引述《PttFund (批踢踢基金)》之铭言:
: Suppose that h > 0 and f' exists and is finite for every x
: in (a-h,a+h). Also suppose that f is continuous on [a-h,a+h].
: If f"(a) exists, show that the limit
: f(a+h) - 2f(a) + f(a-h)
: lim ------------------------- = f"(a)
: h→0 h^2
: Note: 请顺便给一个反例 f(x), 使得左边的极限式存在, 但 f" 不存在.
这个用 L'Hopital's rule 做就可以了:
f(a+h) - 2f(a) + f(a-h) f'(a+h) - f'(a-h)
lim ------------------------- = lim -------------------
h→0 h^2 h→0 2h
f'(a+h) - f'(a) f'(a-h) - f'(a)
= 1/2 { lim ----------------- + lim ----------------- }
h→0 h h→0 -h
= 1/2 { f"(a) + f"(a) } = f"(a).
反例也很简单, 可以想一想 :p
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.218.142