作者FAlin (FA(バルシェ应援))
看板IMO_Taiwan
标题Re: [问题] IMO 2013 in Colombia Day 1
时间Fri Jul 26 23:33:26 2013
: ※ 引述《FAlin (FA(バルシェ应援))》之铭言:
: : 1. Prove that for any two positive integers k , n there exist positive
: : integers m_1 , m_2 , ... , m_k such that
: : 2^k - 1 1 1 1
: : 1 + ------- = ( 1 + --- )( 1 + --- )...( 1 + --- ) .
: : n m_1 m_2 m_k
: : 2. Giver 2013 red and 2014 blue points in the plane , no three of them on a
: : line. We aim to split plane by lines (not passing through these points)
: : into regions such that there are no regions containing points of both the
: : colors. What is the least number of lines that always suffice?
: : 3. Let ABC be a triangle and that A_1 , B_1 , and C_1 be points of cantact of
: : the excircles with the sides BC , AC , and AB , respectively. Prove that if
: : the circumcenter of △A_1B_1C_1 lies on the circumcircle of △ABC , then
: : △ABC is a right triangle.
第一题自己的做法(含思考过程)
首先猜测
2^(k+1) - 1 2^k - 1 1
1 + ----------- = ( 1 + -------)( 1 + ---)
n n m
然後发现m不可能为整数
接着代数字找归律 (n,k)
(2,1) =
3/2
(2,2) =
5/2 = 5/4 * 2/1
(2,3) =
9/2 = 9/8 * 2/1 * 2/1 = 3/2 * 3/2 * 2/1
(2,4) =
17/2 = 17/6 * 2/1 * 2/1 * 2/1
(2,5) = 33/2 = 33/32 * 2/1 * 2/1 * 2/1 * 2/1 = 11/10 * 5/4 * 3/2 * 2/1 * 2/1
(3,1) =
4/3
(3,2) =
6/3 =
4/3 * 3/2 = 4/3 *
3/2
(3,3) =
10/3 = 5/4 *
4/3 * 2/1 = 4/3 *
5/2
(3,4) = 18/3 =
4/3 * 3/2 * 3/2 * 2/1 = 4/3 *
9/2
(3,5) = 34/3 = 17/16 *
4/3 * 4/3 * 3/2 * 2/1 = 4/3 *
17/2
(4,1) = 5/4
(4,2) = 7/4 = 7/6 *
3/2
(4,3) = 11/4 = 11/10 *
5/2
(4,4) = 19/4 = 19/18 *
9/2
(4,5) = 35/4 = 35/34 *
17/2
(5,1) = 6/5
(5,2) = 8/5 = 6/5 *
4/3
(5,3) = 12/5 = 6/5 *
6/3
(5,4) = 20/5 = 6/5 *
10/3
得出
2^(k+1) - 1 1 2^k-1
n为偶数时,有 ( 1 + ----------- ) = ( 1 + --------------- )( 1 + ----- )
n 2^(k+1) + n - 2 n/2
2^(k+1) - 1 1 2^(k-1)-1
n为奇数时,有 ( 1 + ----------- ) = ( 1 + --- )( 1 + --------- )
n n (n+1)/2
所以可用二阶数学归纳法
归纳後证毕
--
valuable sheaves 4 FELIDS
╔╦╦═╦╗╔═╦╦╦═╗ storyteller Blessing Card
║║║═║║║╚╣╩║═╣ JESTER
║║║║║╚╬╗║║║═╣ REVOLT
╚═╩╩╩═╩═╩╩╩═╝ PLAY THE JOKER
AFFLICT / Fragment
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 124.11.128.7
※ 编辑: FAlin 来自: 124.11.128.7 (07/26 23:33)
1F:推 Dawsen:nice! 07/27 02:05