作者cmrafsts (我~好~弱~)
看板IMO_Taiwan
标题Re: [问题] IMO 2013 in Colombia Day 1
时间Fri Jul 26 20:58:50 2013
※ 引述《FAlin (FA(バルシェ应援))》之铭言:
: 1. Prove that for any two positive integers k , n there exist positive
: integers m_1 , m_2 , ... , m_k such that
: 2^k - 1 1 1 1
: 1 + ------- = ( 1 + --- )( 1 + --- )...( 1 + --- ) .
: n m_1 m_2 m_k
: 2. Giver 2013 red and 2014 blue points in the plane , no three of them on a
: line. We aim to split plane by lines (not passing through these points)
: into regions such that there are no regions containing points of both the
: colors. What is the least number of lines that always suffice?
: 3. Let ABC be a triangle and that A_1 , B_1 , and C_1 be points of cantact of
: the excircles with the sides BC , AC , and AB , respectively. Prove that if
: the circumcenter of △A_1B_1C_1 lies on the circumcircle of △ABC , then
: △ABC is a right triangle.
--------------------------------------防第一题雷---------------------------
k=1取m1=n
k>1取m1=n,如果n是奇数
m1=n+2^k-2,如果n是偶数
除掉後就可以化为k比较小的状况,by induction and we are done.
---------------------------------------------------------------------------
这题另一个想法是希望那k个分数可以以某种方法通分,使恰有一个分子比分母多2^i
i=1,2,...,k-1
而且可以对消。像k=3 n=4l+1时可以用
4l+2 4l+4 4l+8
------ ------ ------
4l+1 4l+2 4l+4
所以大概可以直接构造m1~mk。
台湾队两种方法各有一半人用。
--------------------------------底部防雷----------------------------------
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 200.69.102.144
※ 编辑: cmrafsts 来自: 200.69.102.144 (07/26 21:01)
1F:推 Dawsen:第二种有一般通式的构造法嘛 07/26 23:25
2F:→ cmrafsts:二进位吧,没仔细想,列出8l+r的所有状况就可能发现规律 07/27 00:50
3F:推 myflame:不知道我的构造法有没有回答到 07/31 00:05