作者FAlin (FA(バルシェ应援))
看板IMO_Taiwan
标题[问题] IMO 2013 in Colombia Day 2
时间Thu Jul 25 10:10:28 2013
4. Let ABC be an acute triangle with orthocenter H, and let W be apoint on
the side BC, between B and C. The points M and N are the feet of the
altitudes drawn from B and C, respectively. ω_1 is the circumcircle of
triangle BWN, and X is a point such that WX is a diameter of ω_1.
Similarly, ω_2 is the circumcircle of triangle CWM, and Y is a point
such that WY is a diameter of ω_2. show that the points X, Y, and H are
collinear.
5. Let Q>0 be the set of all rational numbers greater than zero. Let
f: Q>0 → R be a function satisfying the following conditions:
(i) f(x)f(y) ≧ f(xy) for all x,y ∈ Q>0,
(ii) f(x+y) ≧ f(x) + f(y) for all x,y ∈ Q>0
(iii) There exists a rational number a>1 such that f(a) = a
Show that f(x) = x for all x∈Q>0.
6. Let n≧3 be an integer, and consider a circle with n+1 equally spaced
points marked on it. Consider all labellings of these points with the
numbers 0,1,..., n such that each label is used exactly once; two such
labellings are considered to be the same if one can be obtained from
the other by a rotation of the circle. A labelling is called beautiful
if, for any four labels a<b<c<d with a+d=b+c, the chord joining the
points labelled a and d does not intersect the chord joining the points
labelled b and c.
Let M be the number of beautiful labellings and let N be the number of
ordered pairs (x,y) of positive integers such that x+y≦n and
gcd(x,y)=1.
Prove that M = N+1.
--
valuable sheaves 4 FELIDS
╔╦╦═╦╗╔═╦╦╦═╗ storyteller Blessing Card
║║║═║║║╚╣╩║═╣ JESTER
║║║║║╚╬╗║║║═╣ REVOLT
╚═╩╩╩═╩═╩╩╩═╝ PLAY THE JOKER
AFFLICT / Fragment
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 124.11.128.7
1F:推 Dawsen:有请学长分析难度 07/25 10:53
2F:推 JGU:5. 证到恒正, 递增. 後面不会 XD 07/26 00:31
3F:推 cmrafsts:4没难度5正常1小时6MARKING SHIT裱人 07/26 00:46
4F:→ cmrafsts:17分是可以拿到的 07/26 00:51
5F:→ Dawsen:我觉得2,3,5比1,4更直接. 6想不出来 如果金牌线>35再重想XD 07/26 05:31
6F:推 Dawsen:JGU学长是不是还有一个条件没用? 07/26 07:13
7F:推 cmrafsts:如果有恒正递增那应该也同时做出,f(整数)>=自己,就快了 07/26 13:12
8F:推 hahaj6u4503:6的给分标准一向很抠@@ 感觉今年23两题是关键,第二题 07/26 13:32
9F:→ hahaj6u4503:感觉会卡掉一些人,金牌线可能又不高了 07/26 13:33
10F:推 cmrafsts:我看目前协调分数感觉会是15~16-22~23-30~31 07/26 22:54
11F:推 Dawsen:看目前的部份分数 台湾可能有3~4金! 07/27 09:42
12F:推 LimSinE:JGU可得1分 07/31 07:41