作者FAlin (FA(バルシェ应援))
看板IMO_Taiwan
标题Re: [问题] IMO 2012 in Argentina Day 2
时间Thu Jul 12 16:56:31 2012
※ 引述《FAlin (FA(バルシェ应援))》之铭言:
: 4. Find all functions f: Z→Z, such that for all a+b+c = 0 holds :
: f(a)^2 + f(b)^2 + f(c)^2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a)
: 5. Let △ABC be a triangle with ∠C = 90度 and that D be the foot of the
: altitude from C. Let X be a point in the interior of the segment CD.
: Let K be the point on the segment AX such that BK = BC. Similarly,
: let L be the point on the segment BX such that AL = AC.
: Let M be the point of intersection of AL and BK.
: Show that MK = ML.
: 6. Determine all positive integers n for which there exist non-negative
: integers a_1, a_2, ...,a_n such that:
: 1 1 1 1 2 n
: ----- + ----- + ... + ----- = ----- + ----- + ... + ----- = 1
: 2^a_1 2^a_2 2^a_n 3^a_1 3^a_2 3^a_n
Q5 防个雷
分别延长BX与AX,过A点做垂直BX的线与过B点垂直AX的线交於E点
因为AE⊥BX、BE⊥AX,所以X是△ABE的垂心
所以ECXD四点共线
连DL,由子母相似,可知AC^2 = AL^2 = AD * AB
所以△ALD ~ △ABL ∴∠ABL = ∠ALD
而∠AED = 90 - ∠EAD = 90 - ∠ABL = ∠ALD
∴AELD四点共圆,同理BEKD四点共圆
∴∠ALE = ∠ADE = 90 、 ∠EKB = ∠EDB = 90
最後
EK^2 = BE^2 - BK^2 = ED^2 + BD^2 - BK^2
= ED^2 + BD^2 - BC^2 = ED^2 - CD^2
EL^2 = AE^2 - AL^2 = ED^2 + AD^2 - AL^2
= ED^2 + AD^2 - AC^2 = ED^2 - CD^2
则 ME = ME 、 ∠EKM = ∠ ELM = 90度 、 KE = LE
∴△EKM ≡ △ELM
∴MK = ML 证毕
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.244.138
※ 编辑: FAlin 来自: 140.112.244.138 (07/12 16:56)
1F:→ hahaj6u4503:得到垂直之後, 是圆的切线可以直接用圆幂证 EK = EL: 07/13 23:09
2F:→ hahaj6u4503:EK^2 = EC * EC' = EL^2 07/13 23:10