IMO_Taiwan 板


LINE

※ 引述《pikahacker (Beat Cal)》之铭言: : 1. Prove that every tournament contains a Hamiltonian path. : (Tournament map: a directed graph such that for every pair of distinct vertices : u and v, there is either an edge from u to v or v to u, but never both.) : (I can prove this easily by double induction, but I heard there is a classic : proof by strong induction. How?) Excuse me...What is double induction? And strong induction? : 2. Given Bertrand's Theorem (there always exists a prime p such that n<p<2n n<p<=2n, for the case n=1 : for every n that is a positive integer), prove that all integers greater : than 6 can be written as the sum of one or more distinct primes. We want to prove that every integer n>=17 can be written as the sum of one or more distinct primes which are smaller than n-5. This can checked by brute force when n<33. Now use induction with it. If n>=33 and n=2k, there is some prime p in [k-2, 2k-7]. Then we have p >= n-p-5 and n-p>=17 when n-p >= p. Hence n-p can be written as the sum of some primes < p and therefore n can be written as the sum of some primes < n-5 If n>=33 and n=2k+1, there is some prime p in [k-2, 2k-7]. Then we have p >= n-p-5 and n-p>=17 when n-p >= p. Hence n-p can be written as the sum of some primes < p and therefore n can be written as the sum of some primes < n-5 This method fails when the theorem is slightly weaken, that is to say: "there always exists a prime such that n<=p<=2n." And, interestingly (Does this word exist?), it can be proved that Given any odd integer n>1, there is a subset S of positive integers such that 1. S contains only one even number 2 2. {3,5,...,n} is a subset of S. 3. For every positive integer m, there is an element s in both S and [m, 2m]. 4. There is a positive integer M such that M can not be written as the sum of some distinct elements in S. --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 220.143.125.103 ※ 编辑: darkseer 来自: 220.143.125.103 (01/17 23:08) ※ 编辑: darkseer 来自: 220.143.125.103 (01/17 23:10)
1F:推 pikahacker:thx 128.12.47.33 01/18







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:BuyTogether站内搜寻

TOP