时间Fri Apr 29 19:00:57 2011
: 1. 1
: ∫((1-x^7)^(1/3)-(1-x^3)^(1/7))dx
: 0
1 1 (1-x^7)^(1/3) 1 (1-y^3)^(1/7) 1
∫(1-x^7)^(1/3) dx = ∫∫ dydx = ∫∫ dxdy = ∫(1-y^3)^(1/7) dy
0 0 0 0 0 0
所以说 原式 = 0
: 2. lim{∫([bx+a(1-x)]^n)dx)}^(1/n),b>a>0.
: n→0
[(b-a)x + a]^(n+1)
∫[(b-a)x + a]^n dx = -------------------- + c
(n+1)(b-a)
这题是不是有缺条件啊...?
: 3.一曲面x^2/4+y^2+z^2/9=3,求其在(-2,1,3)这点的tangent plane和normal line.
f(x) = x^2/4 + y^2 + z^2/9 - 3, del[f(x)] = (x/2, 2y, 2z/9)
del[f(-2,1,3)] = (-1,2,2/3) = (-3,6,2)
tangent plane: -3(x+2) + 6(y-1) + 2(z-3) = 0, 3x-6y-2z+18=0
x+2 y-1 z-3
normal line: ----- = ----- = -----
-3 6 2
: 4.一个碗里面有水,水蒸发的速率和水面面积(就是水和空气接触的面积)成正比,请证明水
: 面下降的速率(水深减少的速率)为定值(和碗的形状无关).
-dV -Adz -dz
----- = kA, ------ = kA, ----- = v = k, k为一常数
dt dt dt
: 5. ∞
: Σ (1/(1+n^2)) 是否收敛?
: n=1
1
-------
1+n^2 1
lim --------- = lim ----------- = 1, 原函数收敛
n->∞ 1 n->∞ 1
----- ----- + 1
n^2 n^2
: 6.一曲线为x^2+y^2=1及x-y+z=1的交线,而f(x,y,z)=x+2y+3z,求在曲线上f的最大值.
del(x+2y+3z) = a[del(x^2+y^2-1)] + b[del(x-y+z-1)]
1 = 2xa + b, 2 = 2ya - b, 3 = b
-1 = xa, 5/2 = ya, x = (-2/5)y
y = +-5/(29)^(1/2), x = -+2/(29)^(1/2), z = 1 +- 7/(29)^(1/2)
f(-2/(29)^(1/2), 5/(29)^(1/2), 1 + 7/(29)^(1/2)) = 3 + (29)^(1/2) = max
: 7.R为y^2=4-4x和y^2=4+4x所围成的区域,其中y≧0,求∫∫ydA
: R
0 (4+4x)^(1/2) 1 (4-4x)^(1/2)
∫∫ydA = ∫ ∫ ydydx + ∫ ∫ ydydx = 1 + 1 = 2
R -1 0 0 0
--
※ 编辑: hsnuyi (118.168.236.205 台湾), 09/12/2019 01:07:58