由衷感謝google大神
[不定積分][∫(x^n)/(1+(x^4)) dx]
寄件者:ㄚ肥呀 (
[email protected])
主旨:請問幾題積分 ∫(x^n)/(1+(x^4)) dx
∫(x^n)/(1+(x^4)) dx
n
X
∫ --------------- dX
1+(X^4)
1.n = 0...................台大考題....不是粉好做
2.n = 1...................easy
3.n = 2...................求救
4.n = 3...................so easy
5.n = 4...................回到 1 .
下面對不對我沒看,請你參考看看
提供者
[email protected]
∫x^2/(1+(x^4)) dx =
因 1/(1+(x^4)) =1/((x^2+1)(x^2-√2 x+1)) + 1/((x^2+1)(x^2+√2 x+1))
=> (x^2+1)/(1+(x^4))=1/(x^2-√2 x+1) + 1/(x^2+√2 x+1)
=>∫x^2/(1+(x^4)) dx = ∫(x^2+1)/(1+(x^4)) dx -∫1/(1+(x^4)) dx
=∫(1/(x^2-√2 x+1) dx + 1/(x^2+√2 x+1)) dx -∫1/(1+(x^4) dx)
上左式的前式的解為
∫dx/(x^2-√2 x+1) =∫dx/((x-√2/2)^2 +1/2)
(令 (x-√2/2) =√2/2tan y =>dx =√2/2.sec^2 y)
=√2 y = √2 arctan (√2(x-√2/2)) ---(1)
上左式的二式的解為
∫1/(x^2+√2 x+1)) dx =√2 arctan (√2(x+√2/2)) ---(2)
上左式的後式的解為
因 1/(1+(x^4)) =(1/2√2).1/(x(x^2-√2 x+1)) - 1/(x(x^2+√2 x+1))
=(1/2√2).((x +√2 )/(x^2+√2 x+1) - (x -√2 )/(x^2-√2 x+1))
=> ∫ 1/(1+(x^4)) =(1/2√2).∫((x +√2 )/(x^2+√2 x+1) - (x -√2 )/(x^2
-√2 x+1)) dx
又 (1/2√2).∫(x +√2 )/(x^2+√2 x+1) dx =(1/2√2).∫x/(x^2+√2 x+1) dx
+(1/2√2).∫√2/(x^2+√2 x+1) dx
=-1/2 ln (1/((1+(x+√2/2)^2)^1/2) +(√2/2).arctan (√2(x+√2/2))
----(3) (用 (2)式的方法可解之)
同理 (1/2√2).∫(x -√2 )/(x^2-√2 x+1) dx
=-1/2 ln (1/((1+(x-√2/2)^2)^1/2) -(√2/2).arctan (√2(x-√2/2))
※ 編輯: FATTY2108 來自: 218.184.96.125 (03/07 18:47)