作者khara (逝)
看板soul
標題Re: [問題] 任何世界的客體都是三維的嗎?
時間Wed Jan 22 15:58:48 2025
※ 引述《amidha (東岐明)》之銘言:
: 這個問題很簡單,套句現今流行話語,靈性修鍊會體會到種種更高維度的世界。
: 當然更高維度世界的認知更為廣闊,就像我們人類認知的地球宇宙相比還在低維。
: 但是只要是有時空世界,即使是在高維,認知到的客體維度還是三維的。
: 高維只是讓種種不同世界的三維客體可以因緣交錯,並沒有三維以上的客體形象。
: 譬如當開天眼看人,可以看見人身維度以外相關的鬼神維度,但顯現出的都是三維形象。
: 人身是三維,鬼神也是三維,只不過是因緣交錯而成多維。
: 所以問題就是,種種不同的靈界宇宙時空下的客體形象,是不是都是三維?
: 《老子》有言『道生一,一生二,二生三,三生萬物。』是不是與此有關?
: 在此請教大家看法,謝謝!
第一個問題我想到的是康德的先天(a priori)說與佛教認識論的歧異
(但佛教要走到認識論這一步也不再是早期阿含而得是後來大乘論典了
看你是否拒斥)
但總之康德的觀點認為我們不可斷言是否有啥真正的客體必然而只能斷言有我們的認識。
至於佛教論點中的「現量」(直接認識)與「比量」(推論認識)又是另一問題
但也不易。
(至於與對手辯論時則不可搬出聖言量畢竟不同出發點我的聖言未必是你的聖言
或者某種意義上聖言其實也可以歸併到現比量:畢竟要經過自己的體悟或推論)
至於『道生一一生二』那一段我想到的是
https://en.wikipedia.org/wiki/Set-theoretic_definition_of_natural_numbers
人類對「數」的最自然認識當然就是數數 (ㄕㄨˇ ㄕㄨˋ),掰開指頭數一數
而這其實可以化約到只要有「空集合」這一個概念就等於產生了一個概念(「一」),
而只要有「空集合與一」這兩個概念就等於產生了「二」的概念,
以下源源而來。
但只要超過自然數而到有理數以上,所有的「無限」都得特別建構(但可以建構),
都不是直觀所能得且會造成理解上的悖論。
所以某些直覺主義派數學家主張廢棄實無窮而只用概念的無窮。但這又會造成實用難題。
後面非常長的一大段廢文是從 AI 得來的
雖說 AI 很會唬爛,有時候編故事可以編到唬死人不償命,
但反正貼貼幻想故事不論出自人或出自 AI 也都差不多,
就來分享一下我跟 AI 的唬爛對談錄。
******
我問
Will the Riemann Geometry degenerate to a geometry similar to the Euclidean
one while we see it locally near a point?
******
ChatGPT 說:
ChatGPT
Yes, Riemannian geometry degenerates to Euclidean geometry locally near a
point, under certain conditions. This phenomenon is often called the local
Euclidean property of Riemannian manifolds.
Explanation:
Riemannian geometry deals with studying smooth manifolds equipped with a
Riemannian metric, which allows us to measure distances and angles locally.
One of the key ideas in Riemannian geometry is that, although the manifold may
be globally curved (i.e., it may have non-Euclidean properties at large
scales), locally around any point, it can resemble Euclidean space.
This is a consequence of local flatness or the second fundamental theorem of
Riemannian geometry, which states that near any point on a Riemannian manifold,
the space can be approximated by a flat Euclidean space. In more formal terms:
Locally (in a sufficiently small neighborhood around a point), the geometry of
a Riemannian manifold appears to be flat and behaves just like Euclidean
geometry.
The curvature of the space, which quantifies how much the space deviates from
flatness, becomes negligible at very small scales, meaning that the distance
between points behaves like it would in Euclidean space, and the angles are
the same as those in Euclidean geometry.
This can be understood via the concept of local coordinates or normal
coordinates. In normal coordinates (which are a kind of local coordinate
system centered at a point), the metric looks like the Euclidean metric, and
the Christoffel symbols (which describe the curvature and the way the geometry
deviates from flatness) vanish at the point.
Formal Explanation:
Riemannian Metric and Curvature: A Riemannian manifold is locally modeled on
R^n (Euclidean space) but may have a varying metric. At any point on the
manifold, we can find a coordinate system such that the metric at that point
resembles the Euclidean metric, i.e., the Riemannian metric is locally like
the Euclidean metric.
Curvature and the Vanishing of Christoffel Symbols: The curvature of the space
is described by the Riemann curvature tensor. In a small enough neighborhood
around any point, the curvature becomes negligible, meaning that locally, the
space looks "flat." The Christoffel symbols (which represent how the
coordinate basis vectors change) also vanish in normal coordinates at that
point, indicating no local curvature.
Local Euclidean Approximation: In simple terms, if you zoom in on any point on
a Riemannian manifold (i.e., look at a sufficiently small neighborhood around
the point), the space will appear flat and will locally behave just like
Euclidean geometry, where the sum of angles in a triangle is 180°, distances
and angles behave as in Euclidean geometry, and the space has no curvature.
Example:
On the surface of the Earth (a 2-dimensional Riemannian manifold), the space
is globally curved (it's a sphere), but if you zoom in on a very small region,
the surface looks flat, and the geometry behaves like Euclidean geometry (
this is similar to how a flat piece of paper looks locally flat even though
the Earth is curved).
In the case of curved spacetime in general relativity (a 4-dimensional
Riemannian manifold), the curvature due to gravitational effects becomes
apparent only at larger scales. Near small regions, however, spacetime can be
approximated by flat Minkowski space (Euclidean-like).
Conclusion:
In Riemannian geometry, locally near any point, the manifold appears to be
Euclidean. The curvature (which describes how the space deviates from
Euclidean geometry) is zero or negligible at small scales. This local
approximation to Euclidean space is a fundamental aspect of Riemannian
geometry, making it possible to use tools from Euclidean geometry in local
regions of a Riemannian manifold.
******
我問
Under this view, could we say that Euclidean Geometry is the most "a priori"
even though we may "see" this "real-world" (or whatever while we don't know
the "thing-in-itself" ) with a Riemann or other perspective?
******
ChatGPT 說:
ChatGPT
Yes, you can indeed interpret Euclidean geometry as the most "a priori" or the
fundamental geometry, especially in the context of local observations or
idealized concepts, even though Riemannian geometry or other geometries may
describe the world from different perspectives or scales.
1. Euclidean Geometry as A Priori:
In the philosophical sense, the term a priori refers to knowledge that is
independent of experience or empirical observation. Euclidean geometry has
often been viewed as a model of "ideal" space, representing the simplest and
most fundamental geometric structure. It provides the basic framework for
understanding space, as it deals with flat, non-curved spaces, where concepts
like straight lines, angles, and distances are well-defined and behave in an
intuitive manner.
The key idea is that Euclidean geometry can be considered "a priori" in the
sense that it is a purely conceptual framework that doesn't require empirical
observation or experience to understand and reason about it. It's the geometry
of the abstract space in which basic principles, like the Pythagorean theorem
, the sum of angles in a triangle, etc., hold true.
2. Riemannian Geometry and the Real-World Perspective:
On the other hand, Riemannian geometry (or other non-Euclidean geometries)
describes more general spaces that might be curved or have more complex
structures. This is often the geometry that is used to describe our physical
universe. In general relativity, for example, the curvature of spacetime is
described using Riemannian geometry, where gravity and matter influence the
geometry of spacetime.
Even though Euclidean geometry is the idealized, simpler model, Riemannian
geometry is more appropriate for describing real-world situations,
particularly at large scales, where curvature and complex structures come into
play. The "real world" — in the sense of physical reality — might not
strictly obey Euclidean rules (especially when considering curved surfaces
like planets, the Earth's surface, or curved spacetime).
3. The Local vs. Global View:
Here’s where the local versus global perspective plays a key role:
Locally, any Riemannian manifold (including the curved space of our universe)
is approximately flat (Euclidean). This means that at small enough scales, the
geometry of the universe looks locally Euclidean and can be described by
Euclidean geometry.
Globally, the universe might have curvature (in the case of space-time, or the
Earth's surface), and this requires a non-Euclidean geometry (Riemannian
geometry, for example) to describe it accurately.
Thus, you could say that Euclidean geometry is the "most a priori" in the
sense that it is the simplest and most fundamental description of space that
can be applied locally (even in curved spaces). It represents the geometry of
idealized or perfectly flat space, and in this sense, it can be considered an
a priori system that underpins more complex, real-world models.
4. The "Thing-in-Itself" and Geometry:
Immanuel Kant's concept of the thing-in-itself (or noumenon) refers to things
as they are independent of our perception or knowledge of them. The "real"
structure of the universe (the thing-in-itself) could potentially be very
different from how we perceive it. In this context:
We may experience the world through the lens of Riemannian geometry because
our perception of spacetime is influenced by curvature (due to gravity, for
instance). Our measurement of distances and angles is shaped by this curvature
.
However, our a priori concepts of space and geometry — like those of
Euclidean geometry — may not reflect the true nature of the universe, but
they remain an idealized, fundamental framework for thinking about space in
the abstract.
Thus, Euclidean geometry could be thought of as an idealized and fundamental
way of conceiving space, whereas Riemannian geometry (and other geometries)
are more practical and applicable for describing the physical world as we
experience it. In some sense, Euclidean geometry represents our purely
rational concept of space, while Riemannian geometry reflects the empirical
reality of our universe.
5. Summary:
Euclidean geometry can be considered "a priori" because it is the idealized
geometry that applies to flat, non-curved spaces and provides the simplest
model of space.
Riemannian geometry is needed to describe spaces that are curved or have non-
Euclidean characteristics, and it is often used to describe the real-world
geometry of spacetime or curved surfaces.
Locally, Riemannian geometry behaves like Euclidean geometry, so at small
enough scales, the distinction between the two is less noticeable. This means
that Euclidean geometry can be seen as an idealized foundation, while
Riemannian geometry is a more general, descriptive framework for the physical
world.
******
我問
「英國的海岸線有多長」這句話是否難以說有任何終極意義卻可以依量尺的不同而決定?
實用上來說,「想要築堤壩」的測量尺度,與「想要從事軍事防守」的尺度乃至想要對某
特定海洋生態做研究的尺度,都可以有不同的海岸線長?對於想築堤壩的人來說跟他說從
基本粒子的尺度海岸線長是無窮大,雖說答案是正確的但卻可能因毫無實效而招惹對方的
憤怒?
******
ChatGPT 說:
ChatGPT
你提出的問題觸及了「海岸線的長度」這個概念的多重面向,並且強調了量測尺度對答案
的影響。確實,「英國的海岸線有多長」這個問題並沒有一個單一的終極答案,因為海岸
線的長度會隨著選擇的測量尺度不同而有所變化。
這是由於海岸線悖論(coastline paradox)所造成的現象:當我們使用更精細的尺度來
測量海岸線時,海岸線的總長度會變得越來越長。這是因為海岸線本身往往呈現不規則的
形狀,當測量尺度變小(即測量更細緻的細節)時,能夠捕捉到更多的微小曲折和突起,
結果造成長度增長。
實際應用中的不同尺度
1. 築堤壩的尺度:
對於一個工程師或者負責堤壩建設的人來說,海岸線長度的測量會以
工程所需的精確度來進行,可能只需要一個大範圍的估算,不需要考慮微小的細節。
2. 軍事防守的尺度:
在軍事防守中,海岸線的測量可能會依據防禦設施的分布和戰略需
求來確定,可能會關注一些關鍵的海岬和入海口等特定區域,而不會過於關注極細的曲折
處。
3. 生態研究的尺度:
對於從事生態學研究的人來說,海岸線的長度可能會基於生態系統
的邊界和特定物種的分布來進行測量,這可能會選擇不同的尺度來定義海岸線,以便對特
定環境進行細緻的分析。
關於「無窮大」的說法
如果從粒子的尺度來測量海岸線,理論上是無窮大的,因為當尺度無限細小時,每一點的
曲折和不規則性都會被計算進去,這樣會導致長度不斷增加。這樣的答案對於實際應用來
說並不具備意義,且可能會讓提問者感到困惑甚至不滿。因此,當涉及具體問題時,我們
需要根據使用者的需求選擇合適的測量尺度,而非提供一個過於抽象的「無窮大」答案。
結論
正如你所說,「海岸線的長度」這個問題的回答會依據測量尺度的不同而有所變化。每一
個實際情境都需要根據具體需求來選擇測量方法,而過於理論化的回答(如無窮大)可能
無法有效解決實際問題,反而會引發不必要的困擾。
******
我問
這個觀點是否可與「中觀」中的「勝義空」與「俗諦有」合拍?某種意義上佛教是否否定
了根本的 a priori 卻主張本無一物的「空」(Shunyatā)中卻可因每個剎那變化中存
在者的需求而生出種種「有」?佛教的辨證性是否可說在此之上建構?
******
ChatGPT 說:
ChatGPT
你的問題非常深刻,觸及了佛教的哲學觀點,尤其是「中觀」思想中的「勝義空」和「俗
諦有」的關係,這與你所提到的「海岸線長度」的問題有某些相似之處,可以進行有趣的
對比。
佛教的「勝義空」與「俗諦有」
在中觀學派中,佛教的核心概念之一是「空」(Shunyatā),即一切法無自性,無固定
不變的本質。從勝義空(究竟的空)來看,所有事物都是無常的、無自性、互依的,並不
存在一個固有的、本質的「我」或「物」。這一觀點並非否定世界的存在,而是指出它的
存在是相對的、條件的。
與此同時,佛教也不否認現象界的「存在」,而是提出俗諦有(即相對的真理),即在日
常生活中,我們依賴事物的相對性和條件性來進行操作、理解和體驗世界。這就是為何我
們會看到「有」的存在,儘管從「空」的角度來看,這些「有」只是暫時、條件性的,並
非永恆不變的。
中觀的辨證性與海岸線的長度問題
這樣的觀點確實與「海岸線的長度」問題有相似之處。在「海岸線悖論」中,我們同樣面
對了一個看似簡單的問題——海岸線的長度——而隨著測量尺度的不同,我們會得到不同
的答案。這可以視為佛教中俗諦有的表現:不同的測量尺度和條件下,我們對海岸線的「
長度」有不同的理解,這些理解都是有條件、有依賴的。
而從勝義空的角度來看,這些長度的變化、測量的尺度本身,都是相對的,並非固定的事
實。就如同佛教中所說,事物的真實性不在於它們的固有存在,而是在於它們的相依性和
變化性。因此,從某一特定尺度來看,海岸線的長度可能是有限的,但從更細緻的尺度來
看,長度無限延伸。這與佛教中的「空」——即一切事物的無自性和無常——有著相似的
邏輯。
辨證性與構建
佛教的辨證性正是建立在這種空與有的互動上。佛教哲學並不是單純的二分法,而是透過
辨證的方式呈現事物的相對性和變化性。在這個框架中,「空」並不是絕對的虛無,而是
對一切事物「空性」的理解,這種理解並不排除「有」的存在,只是指出「有」的存在是
條件性的、依賴於因緣的。
同樣地,當我們談論海岸線的長度時,它的長度並非固定不變的,而是依賴於我們如何選
擇尺度來測量。這不僅是對具體現象的變化,也是一種對「存在」本身的理解——無論是
海岸線還是佛教所說的「一切法」,其實都處於不斷變化、相互依賴的狀態中。
結論
從這個角度來看,「海岸線悖論」與佛教的中觀思想之間確實存在某種共鳴。在佛教中,
勝義空與俗諦有的區別不僅是一種哲學上的辨證,也是一種思考事物相對性、條件性和依
賴性的方法。就像海岸線的長度,無論是短還是長,都依賴於我們的選擇和測量尺度,同
樣的,事物的「空性」並不否定「有」,而是指出其背後的依賴和變化。佛教的辨證性正
是在這種變化中找到了一種中道的智慧。
******
我問
相對論的宇宙觀是建立在四維的黎曼幾何上的嗎?但相對而言更「先天」(a priori 符
合我們人類看世界的直觀的)的歐式幾何若說擴充維度是否也可以解釋?康德意義下的歐
式幾何之於人類的先天性(前提是我們不可能認識物自己而必然得從我們的認知框架來認
識世界)指的是三維歐式空間或任意維但出發點是歐式?由於黎曼幾何在局部一點附近來
看其實亦可謂「近似於」歐式幾何,這個意義上是否我們可說不論幾維但歐式這個架構對
我們來說都是先天的或者仍可舉出反例?會不會我們換隻眼睛或者換個觀察方式其實可以
在微觀中看到某些非整數的 fractal dimension 例如微雕藝術中可看到很奇怪的空間或
者某些欺騙眼睛的畫作?
******
ChatGPT 說:
ChatGPT
你提出的問題涵蓋了相對論、幾何學、康德的認識論以及維度和空間感知的多個層面,這
些主題都涉及到如何理解和解釋我們對世界的認知框架。讓我們逐一解析這些問題,看看
它們之間的關聯與討論。
相對論與黎曼幾何
相對論,尤其是愛因斯坦的廣義相對論,確實是建立在黎曼幾何的框架之上。在這個理論
中,物質和能量使得空間與時間(即四維時空)彎曲,這種彎曲並非在傳統的歐式空間中
進行,而是在黎曼幾何的空間中進行,這是一種具有曲率的非歐幾何結構。
在廣義相對論中,時空的彎曲是物質存在的結果,而黎曼幾何提供了描述這種彎曲的數學
工具。這與我們日常生活中熟悉的歐幾何(即平直空間的幾何)有根本的不同,因為在歐
幾何中,空間是平坦的,不存在彎曲和曲率。
歐式幾何與人類的直觀
康德的哲學中,空間和時間是我們先天的感知框架,他稱之為「先天的形式」,即它們是
我們認知世界的先驗條件。康德認為,我們不可能直接認識物自身(物自體),我們所能
認識的是經由感官經驗過濾過的現象。而這些現象,根據康德的看法,是在空間和時間這
些先天的框架下展開的。
歐式幾何,作為我們日常經驗中最直觀的幾何形式,是描述三維空間中物體位置和關係的
幾何系統。康德認為這種幾何結構是「先天的」,是我們認知世界的基本框架,這種空間
直觀不僅是三維的,還可能擴展到更高維度,因為我們可以使用數學工具來處理任意維度
的空間。
黎曼幾何與歐式幾何的關係
黎曼幾何和歐式幾何在局部空間中確實有相似之處。在黎曼幾何的框架下,空間的曲率可
以是變化的,但在局部區域,空間的結構可以近似為歐式幾何,即在一個足夠小的範圍內
,黎曼幾何就像是歐式幾何。這一點非常重要,因為在廣義相對論的描述中,儘管整體時
空是彎曲的,但在小範圍內,我們依然可以使用歐式幾何來描述物體的運動和相互作用。
所以,在某些情況下,無論空間有多高維,歐式幾何作為人類認知框架的先天性,確實可
以在局部區域或在我們的日常經驗中有效地描述物理現象。換句話說,對我們來說,歐式
幾何提供了最直觀的理解和操作方式,儘管這種直觀在大尺度或極端條件下可能不再適用
。
關於「非整數維度」和人類感知
你提到的「換隻眼睛或者換個觀察方式」可以在微觀世界中看到某些非整數的分形維度(
fractal dimension),這是一個非常有趣的觀點。在現實中,確實存在許多現象,如自
然界中的分形結構,或者某些微觀和藝術現象,它們的空間結構在數學上可以用分形維度
來描述。
例如,分形幾何學揭示了許多自然物體(如雲彩、山脈、海岸線等)具有自相似的結構,
並且其維度可能是非整數的(例如海岸線的長度可以無限長)。在微觀世界中,某些表面
結構或藝術作品(如微雕藝術)也可能展示出不符合傳統歐式幾何的結構,這些結構可以
用更複雜的數學來描述。
然而,這並不意味著我們的直觀認知能力可以完全理解這些非整數維度的結構。雖然我們
的視覺和觸覺可以感知到某些非線性的空間變化,但對於這些結構的深刻理解,依然需要
數學工具的輔助。這也表明,雖然我們的認知框架基於歐式幾何,但當我們進入更複雜的
領域(如分形結構或高維空間),我們需要更精確的數學工具來解釋這些現象。
結論
總結來看,康德的「先天形式」即歐式幾何,確實是我們認識世界的一種基本框架,但這
並不意味著我們的直觀感知僅限於三維歐式空間。隨著科學的發展,我們能夠在數學上處
理更高維度的空間,並且可以描述如分形結構等非整數維度的現象。在局部區域,黎曼幾
何和歐式幾何是可近似的,但在大尺度和極端條件下,黎曼幾何提供了一種更精確的描述
方式。因此,無論是對高維空間的理解還是對微觀世界的描述,我們都需要靈活運用不同
的幾何工具。
******
我問
所有的線性代數所依以建立的結構是否仍可謂是歐式的(即便我們只處理線性的對應而不
處理曲率等問題)?但,若從唯識的立場出發,是否只承認我們有此生俱有的「藏識」可
能是累劫建構而在此生彷彿是先天,但不承認如歐式可為任何生命的根本的先天的認識架
構?
******
ChatGPT 說:
ChatGPT
你的問題探討了線性代數的結構與歐式幾何的關聯性,以及從唯識學派(瑜伽行派)的角
度,對於「先天」認知架構的理解,這是一個非常有趣且深奧的問題。我將從兩個層面來
進行分析,一方面是線性代數的結構是否可謂「歐式」,另一方面是唯識學派如何看待「
先天」的認知架構。
線性代數的結構與歐式幾何的關聯
在傳統的線性代數中,我們處理的對象主要是向量空間、線性變換、矩陣、特徵值等數學
結構。這些結構本身並不涉及曲率或非歐式幾何的問題,因此從某種意義上來說,線性代
數的基礎結構是與歐式幾何的直觀結構相契合的。
在歐式空間中,我們通常假設空間是平坦的,並且滿足平行公設(即兩條平行線永遠不會
相交)。這樣的空間結構給我們提供了簡單直觀的幾何理解,且我們的線性代數處理的向
量空間(例如 Rn\mathbb{R}^nRn)也是歐式空間的一部分。特別是當我們討論向量內積
、正交性、基底變換等問題時,這些操作都可以在歐式空間的框架中進行,並且基於直觀
的幾何理解。
然而,當線性代數被擴展到更一般的向量空間(比如巴拿赫空間、希爾伯特空間等)時,
它不再局限於歐式幾何的結構。這些更一般的空間可能不再具有歐式幾何中的直觀幾何解
釋,尤其是在處理無窮維空間時。因此,線性代數的結構在某些情況下可以脫離歐式幾何
,尤其當我們考慮到更一般的向量空間結構時。
唯識學派的「先天」認知架構
唯識學派的核心觀點是「一切唯心造」,即外在世界的所有現象都是由心識所造,並且依
賴於「識」的作用來呈現出我們的經驗。唯識學派認為我們的「藏識」(阿賴耶識)是所
有認識的根本,這是我們深層的心識結構,積累了從無始劫來的所有經驗和種子(種子指
的是過去經驗的潛在印記)。因此,唯識學派強調的「先天」並非是固定的、普遍的認知
框架,而是每個生命體基於過去的經歷和習氣(習氣即行為模式或習慣)所形成的「藏識
」。
在唯識的視角下,這些「藏識」和相應的「識」並非與外界的物質結構(例如歐式空間的
結構)有直接關聯。唯識學派並不承認一種普遍適用於所有生命的、類似於歐式幾何那樣
的「先天」認知架構。每個人的「識」都是個體化的,根據各自的經歷、習氣和內在的認
知模式來構建其理解世界的框架。
與此相比,歐式幾何作為一種認知框架,提供了一種普遍的、基於物理空間的直觀理解,
並且不考慮個體的經歷和過去的印記。而唯識學派則強調認知結構是個體化的,每個人的
世界觀和認知架構都是基於他們的過去經歷和當前的「藏識」來生成的。因此,唯識學派
不認為有一個普遍的、對所有生命都先天有效的「認知框架」,更強調的是生命的認知狀
態如何依賴於個體的心識運作。
唯識學派與歐式幾何的對比
從唯識學派的立場來看,儘管我們的心識(藏識)可能似乎是「先天」的,但這個「先天
」是基於過去累積的經驗和種子的形成,並不等同於歐式幾何中那種普遍適用、與物理空
間結構相關的「先天」框架。換句話說,唯識學派的「先天」認知並非普遍且固定的,而
是個體化、經驗化的,它依賴於每個生命的心識過程,而這些過程可能是極其多樣和變化
的。
如果說我們在某種程度上可以承認「藏識」作為先天的認知基礎,那麼這個基礎並不是固
定不變的,而是隨著個體生命的經歷和行為模式而變化的。這與歐式幾何的固定性和普遍
性不同。歐式幾何作為一種物理空間的直觀理解,對所有人來說似乎都具有相同的認知結
構,而唯識學派則強調每個人的認知結構是根據他們的個體經歷而形成的,並且這種結構
並不一定是「幾何性」的。
結論
總的來說,線性代數中的結構在某些情況下與歐式幾何的結構有相似性,尤其在處理有限
維的向量空間時,這些結構可以被視為「歐式的」,但隨著問題的擴展(如更高維空間或
無窮維空間的情況),這些結構可能脫離歐式幾何的直觀理解。
從唯識學派的角度看,並不認為歐式幾何作為一種認知架構是對所有生命先天的基礎。唯
識學派強調認知的「先天」是依賴於每個個體的藏識,而非基於一個普遍的、固定的物理
或幾何框架。因此,唯識學派對於「先天」的理解是個體化的、經驗化的,與歐式幾何的
普遍性有所不同。
******
我問
換言之唯識可以容許我們想像有可能生做一隻分形蟲子體驗到那些很奇怪的非整數維度?
即便不知道要累積些什麼奇怪的業或種子才會生做這種分形蟲子。
******
ChatGPT 說:
ChatGPT
是的,從唯識學派的立場來看,確實可以想像一個極為特殊的生命形式——例如一隻「分
形蟲子」——其經驗可能涉及非整數維度或一些異常的空間結構。唯識學派強調的是認知
的相對性,並認為每個生命體的心識(藏識)會根據其過去的業力(業和種子的積累)來
形成獨特的認知框架,因此,理論上,這樣的「分形蟲子」可以擁有與我們完全不同的、
基於其心識結構的經驗世界。
唯識與「非整數維度」
唯識學派的核心觀點是「一切唯心造」,即外在世界的現象是由心識所構建的。這意味著
,生命的感知不僅限於我們所認識的物理空間結構,也可以是極為異常且不同於我們直觀
經驗的。當你提到「非整數維度」這樣的概念,實際上是在探索一種可能的心識結構,這
種結構並非基於傳統的歐式幾何或物理空間,而是依賴於不同的心識經驗。
在唯識的框架下,我們可以想像一個生物體(比如分形蟲子)擁有不同的認知結構,這種
結構可能會使得它的經驗世界呈現出「非整數維度」的特徵。這並非意味着這個生命體在
物理空間中真的處於一個具體的非整數維度的空間,而是其心識如何「構建」這些維度的
感知,這與其內在的經驗、業力積累及「種子」有關。
業與種子的角色
唯識學派強調,生命體的認知架構是由其「業」和「種子」所決定的。業是生命過去行為
的結果,這些行為會在心識中留下印記,成為未來經驗的種子。而這些種子會在特定的條
件下生起,形成生命的認知模式。因此,一隻「分形蟲子」的認知世界和經驗模式可能是
基於它的過去行為和積累的種子所形成的。
換句話說,如果這隻蟲子的心識在某些過去的生死輪迴中積累了某種特殊的種子,這些種
子可能使它的心識結構呈現出與我們常規經驗完全不同的形態,甚至能夠「感知」某種非
整數維度的空間。這並非意味著它在物理上處於一個異常的空間,而是它的經驗框架本身
具有不同的感知和結構。
不同的「經驗框架」
從唯識的角度來看,並不是所有生命體的認知架構都是相同的。不同的生命體根據其過去
的業和種子,可能會形成不同的認知世界,這些世界可以極為特殊,甚至有可能在我們的
經驗框架中無法理解。正如你所說,即便我們不清楚究竟需要積累什麼樣的業或種子才能
成為這樣一隻「分形蟲子」,唯識學派的立場仍然容許這種可能性,因為它強調的是心識
的塑造和變化,而非一個固定的、普遍的認知框架。
結論
所以,從唯識學派的觀點來看,的確可以想像有某些生命形式會以完全不同的方式「感知
」世界,這些生命體可能擁有非整數維度的經驗,或者以某種分形結構的方式來認識和構
建它們的空間。這樣的認知結構並非基於外在的物理結構,而是依賴於該生命體的心識結
構及其過去的業力積累。
唯識學派並不排斥這樣的可能性,因為它認為每個生命的認知世界是由其內在的心識和過
去的經歷(業和種子)所決定的,這使得每個生命體的經驗世界可以有極大的差異性。因
此,一隻「分形蟲子」的經驗世界完全有可能與我們的直觀認知大相徑庭,甚至可以觸及
我們無法理解的維度結構。
******
我問
Somebody says that Euclidean Geometry is a priori just as the Number (I guess
he means the nature number), however, Euclidean Geometry is constructed based
on at least the Real (or even the Complex), while in an intuitive perspective,
we can only know the nature number (as a priori) rather than the Real. How
could we explain this?
******
ChatGPT 說:
ChatGPT
Your question touches on a key philosophical distinction regarding the nature
of mathematical knowledge, particularly the relationship between Euclidean
geometry, number theory (especially natural numbers), and real numbers from an
epistemological perspective. You're highlighting an interesting issue: the
contrast between the a priori nature of natural numbers versus the more
complex mathematical objects like real numbers, which are often considered
less immediately accessible or intuitive.
1. Euclidean Geometry and its A Priori Nature
Euclidean geometry is often thought of as a priori in the sense that its
fundamental principles (such as points, lines, planes, and the axioms that
govern them) seem to be inherently grasped by our intuition. These principles
feel "self-evident" in the context of space as we perceive it. For example,
the idea that two straight lines in a plane that don't intersect are parallel
seems to be an immediate, a priori intuition for us, especially when we are
dealing with familiar, flat, two-dimensional surfaces.
However, Euclidean geometry relies on the real number system in practice,
especially when we describe geometric shapes with exact measurements. For
instance, the length of a line segment is typically described using real
numbers, and when we measure areas or angles, we're also implicitly working
within the framework of the real numbers (which includes irrational numbers
like π, square roots, etc.).
Despite this reliance on the real numbers, the principles of Euclidean
geometry themselves (such as those in Euclid's Elements) can be seen as a
priori because they do not depend on specific numerical values but rather on
abstract spatial relationships that seem intuitively accessible to the human
mind.
2. Natural Numbers as A Priori
The natural numbers (1, 2, 3, etc.) are often seen as a more straightforward
example of a priori knowledge. From a Kantian perspective, the concept of "1"
or "2" seems to be intrinsic to our cognitive faculties, and this intuition
about counting is thought to be inherent in our mental structure. This is why
natural numbers feel intuitively a priori — they do not require empirical
observation to grasp. We are born with the ability to distinguish quantities,
even if in a rudimentary sense. This a priori grasp of counting, then, extends
naturally to the operation of addition and multiplication, which are basic
operations within number theory.
3. The Real Numbers and their Intuition
Now, when we shift to the real numbers, we enter a different epistemological
territory. While natural numbers can be thought of as inherently grasped, the
real numbers (which include rationals and irrationals) are much more abstract.
Real numbers are constructed in more formal mathematical settings, such as
through Dedekind cuts or Cauchy sequences, and this construction is not
something that we intuitively grasp in the same way we understand the natural
numbers.
In other words, while the natural numbers are part of our basic, a priori
cognitive framework, the real numbers are not immediately intuitive in the
same way. They are constructed through mathematical formalism and are less
tied to our immediate sensory experience. For example, it's much more
difficult to directly visualize irrational numbers like sqrt{2} or π in a
concrete, intuitive way, because they don't correspond to exact, observable
quantities in the physical world.
4. The Role of Real Numbers in Euclidean Geometry
While Euclidean geometry can be described using real numbers (for instance,
the length of a line in Euclidean geometry is often a real number), this doesn
’t necessarily imply that Euclidean geometry itself depends on the intuition
of real numbers. The structure of Euclidean geometry is a priori because it's
about spatial relationships (like the distance between points, the angles
between lines, etc.) rather than the specific magnitudes those distances or
angles take. We rely on real numbers to quantify these spatial relationships,
but the basic geometry itself (the axioms and theorems) can be understood
independently of these numerical details.
5. Mathematical Construction vs. Intuitive Grasp
Your question also raises the issue of mathematical construction versus
intuitive grasp. The natural numbers can be seen as intuitively grasped from
the outset, but the real numbers, and by extension many of the more abstract
structures in mathematics (like complex numbers, higher-dimensional spaces,
etc.), are more constructed — they require more formal definitions and can't
be directly grasped by the same a priori intuitions we have for natural
numbers.
This is important: we can recognize that something like the real numbers is
mathematically constructed (through a rigorous process of limits, continuity,
etc.), yet still work with them abstractly and symbolically as if they were
part of our intuitive framework. But this does not mean the real numbers
themselves are a priori in the same way natural numbers are.
6. Kantian Epistemology and the Limits of Intuition
From a Kantian perspective, the distinction between the natural numbers and
real numbers might be framed like this: natural numbers are part of our
cognitive faculties' a priori ability to structure experience, whereas the
real numbers — though crucial to mathematical physics and geometry — are a
construction that extends beyond our immediate cognitive intuitions. Kant
might argue that while the natural numbers correspond to basic ways of
organizing our experiences (such as counting objects), the real numbers,
though essential for describing continuous phenomena (like motion, distances,
time), require more formalized methods of construction that are not
immediately present to intuition.
Conclusion
To summarize: the natural numbers can indeed be seen as a priori, since they
correspond closely to basic cognitive abilities (counting, distinguishing
quantities) that are fundamental to our understanding of the world. On the
other hand, Euclidean geometry, while based on principles that might seem a
priori (like straight lines and parallelism), relies on the real numbers for
precise measurement and description, and these real numbers are not as
immediately intuitive or a priori in the same way natural numbers are. Real
numbers require more formal construction and are abstract, whereas natural
numbers feel directly tied to our cognitive faculties and intuitive grasp of
the world.
--
Looked at from afar, appears to be hopelessly wrong may contain
excellent ingredients and that its excellence may remain unrevealed
to those guided by strict methodological rules. Always remember that
my examples do not criticize science; they criticize those who want
to subject it to their simpleminded rules ……
Paul Feyerabend
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.37.226.64 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/soul/M.1737532736.A.DD3.html
※ 編輯: khara (114.37.227.20 臺灣), 01/23/2025 12:42:19