作者smallguy0203 (人生就像一場戲)
看板ntu-sv
標題修課
時間Thu Aug 25 14:14:33 2005
我選了GIS跟電腦視覺(海洋工科的鄭勝文)
有興趣的一起來吧
一、 內容
電腦視覺是探究演算法(algorithm)之學問,用以由單張或多張二維影像,反算實存世界或物體之狀態,其應用包括生產線品管檢測、醫療影像判讀、車輛自動導航、無人保全監測、機器人視覺控制、動畫製作等,範圍涵蓋日常生活、產業及高科技領域,已成為現代化社會不可或缺的基礎技術。
課程目標:
1.瞭解並熟習電腦視覺現行基本演算法。
2.介紹電腦視覺技術現況,提供實際應用及決定研發方向之參考資訊。
課程大綱:
0. Course Overview(概論)
Part I: Image Formation(成像:影像形成)
1. Introduction(緒言)
2. Imaging Geometry(成像幾何)
3. Illumination and Color(照明與色彩)
Part II: Early Vision – Single Image(單一影像處理)
4. Linear manipulation of images(線性運算)
5. Digital image processing - filtering and edge detection(濾波與邊緣偵測)
6. Features(特徵計算與運用)
Part III: Early Vision – Multiple Images(多數影像處理)
7. Multiview Geometry(多軸成像幾何)
8. Stereopsis (3D vision) – photogrammetry(立體成像)
9. Structure from Motion(系列影像處理)
Part IV: Mid-Level Vision(影像分割與應用)
10. Segmentation by Clustering(群聚分割法)
11. Segmentation by Model Fitting(回歸分割法)
12. Segmentation using Probabilistic Methods(概率分割法)
13. Motion Estimation and Tracking(運動估測與追?)
Part V: High-Level Vision – Geometric Methods(高階視覺-幾何方法)
14. Model-Based Vision(依據模型之視覺)
15. Smooth Surfaces(連續表面)
16. Range Images(距離影像)
Part VI: High-Level Vision –Probabilistic Methods(高階視覺-概率方法)
17. Finding Templates(樣板找尋)
18. Recognition(辨識)
Part VII: Applications(應用)
二、參考書目
教材:
1. David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2003.
參考資料:
1. Trucco and Verri, Introductory Techniques for 3D Computer Vision, Prentice Hall 1998.
2. Linda Shapiro and George Stockman, Computer Vision, Prentice Hall, 2001.
3. Mubarak Shah, Fundamentals of Computer Vision, 1997. (electronic edition)
4. Gonzalez, Woods, and Eddins, Digital Image Processing Using MATLAB, Prentice Hall, 2004. ISBN 0-13-008519-7.
5. International Journal of Computer Vision (IJCV)
6. Pattern Analysis and Machine Intelligence (PAMI)
7. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
8. International Conference on Computer Vision (ICCV)
三、 成績評量方式
作業 50 ﹪、期中考 20 ﹪、期末考 30 ﹪
四、預修課程
Prior knowledge of programming, algorithms, and linear algebra is required. Programs will be done in Matlab, but a prior knowledge of this language is not required.(具備程式語言、演算法及線性代數之基本知識。實例及演習採Matlab語言,但不需預先具備此語言之運用能力。)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.12.126
1F:推 bowlong:computer vision...海洋工科所還是資工所呢?? 61.231.60.5 08/25