logic 板


LINE

※ 引述《sindarin (官)》之銘言: : : 我不認為「(x)(y)[x=y ≡ (F)(Fx≡Fy)]」是「『正確的』LL」,所謂「正確的LL」與 : : 大彭孟堯教授的「LL」不一樣,其他的理由與意見,有部份被你拿掉了,這裡看不到, : : 如:LL與「正確的LL」可能等價,等等;有需要請回看。 : 所以這裡的意思會是二階邏輯中也可以有像是一階邏輯中PNF theorem? : 這我不敢說到底有沒有,我只是想重述原發文者的意思,而他的說法看起來也比較合理。 : 去年當彭老師助教的時候沒有注意到這點,也是我太疏忽,有機會會再向他請教。 They are certainly not equivalent. In general, (x)[P → Ax] is equivalent to [P → (x)Ax] (provided that x doesn't occur free in P); but [(x)Ax → P] is equivalent to (Ex)[Ax → P], and NOT to (x)[Ax → P] To prove the non-equivalence, let (LL1) be (x)(y)[x=y ≡ (F)(Fx≡Fy)], and (LL2) be (x)(y)(F)[x=y ≡ (Fx≡Fy)] The following model M=<D, D1> (a full model with monadic predicate variables only and no constant) should suffice: D={a, b}; D1= P(D) (the power set of D); Let σ be an assigment such that (x, y, F are variables) σ[x] = a σ[y] = b σ[F] = {a, b} So we have (M, σ) |≠ [x=y ≡ (Fx≡Fy)], hence (LL2) is FALSE in M. But (LL1) is TRUE in M: proof: let τ be any assignment. If (M, τ) |= (x=y), then τ[x]=τ[y] (is either a or b), then for all τ*, τ[x] ∈ τ*[F] iff τ[y] ∈ τ*[F] then (M, τ) |= (F)(Fx≡Fy). As a result, (M, τ) |= [x=y → (F)(Fx≡Fy)] for any τ. on the other hand, If there is some assignment τ such that (M, τ) |≠ (x=y), then τ[x] ≠τ[y] (assume without loss of generality τ[x]=a & τ[y]=b) then we have the assignment υ such that υ[F]={a}, and thus a ∈{a} (=υ[F]), but it is not the case that b ∈{a} (=υ[F]). Hence, τ[x]∈υ[F] but not τ[y] ∈υ[F], Hence (Fx → Fy) is FALSE under assignment υ, Hence (M, τ) |≠ (F)(Fx → Fy), a forteriori, (M, τ) |≠ (F)(Fx ≡Fy). So for ANY assignment τ such that (M, τ) |= (F)(Fx ≡Fy), we should have (M, τ) |= (x=y). So (M, τ) |= [(F)(Fx≡Fy) → x=y ] for any τ. With these results, we have established that (M, τ) |= [x=y → (F)(Fx≡Fy)] for any τ, and (M, τ) |= [(F)(Fx≡Fy) → x=y ] for any τ, so we have (M, τ) |= [x=y ≡ (F)(Fx≡Fy)] for any τ. This implies that (LL1): (x)(y)[x=y ≡(F)(Fx≡Fy)] is TRUE in M. Q.E.D --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.146.29 ※ 編輯: MathTurtle 來自: 140.112.146.29 (12/24 12:39)







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Soft_Job站內搜尋

TOP