作者LoveSports (我要當一個渣攻)
看板Stock
標題[新聞] GPT5.2顛覆理論物理學定說發現簡潔新公式
時間Wed Feb 18 14:48:28 2026
原文標題:
GPT5.2が理論物理学の定説を覆し、シンプルな新公式を発見
GPT5.2顛覆理論物理學定說,發現簡潔新公式
原文連結:
https://news.yahoo.co.jp/articles/409f5df554232025b0ab3aa48b2116d80e53a38c
發布時間:
2/15(日) 21:55
記者署名:
無
原文內容:
美國 OpenAI 於 2026 年 2 月 13 日宣布,該公司最新的 AI 模型「GPT-5.2」已解開理
論物理學中的未解決問題。
它在素粒子物理學的「膠子散射」研究中,發現了過去被認為
不會發生的相互作用,並從數學公式的發現到證明,全程自主完成。此成果已由普林斯頓
高等研究所等機構的
專家完成驗證,成為 AI 有可能成為科學發現主體的歷史性案例。
根據 OpenAI 以及多家媒體報導,這次的發現與素粒子物理核心問題之一——「散射振幅
」的計算有關。具體而言,在描述原子核內強作用力的理論中,負責傳遞強作用力的基本
粒子「膠子」的振幅計算方面,傳統教科書一直認為,在特定條件(特定的螺旋度構型)
下,相互作用會為零。然而,GPT-5.2 推翻了這一既有定說,指出在特定條件(稱為
half-collinear regime)下,相互作用實際上為非零,並且可以用極為簡潔的數學公式
來描述。
在此次發現過程中,GPT-5.2 所扮演的角色不僅僅是計算工具。首先,
GPT-5.2 Pro 模型
將人類所計算出的複雜數學式大幅簡化,並從中辨識出隱含的模式,進而提出一般化公式
的「猜想(Conjecture)」。接著,其內部的強化推理模型進行了約 12 小時的自主思考
,完成對該公式正確性的數學「證明(Proof)」。AI 能夠從假說提出到嚴格證明一貫完
成,這一點與以往僅作為研究輔助工具的 AI 有本質上的不同。
這一成果
已由普林斯頓高等研究所的著名理論物理學家 Nima Arkani-Hamed 等人驗證並
確認正確。Arkani-Hamed 表示,GPT-5.2 與人類專家的協作,為符合嚴格科學探究標準
的研究模式提供了一個範例。
此外,研究團隊已開始將該方法應用於理論上傳遞重力的粒子「重力子(graviton)」的
研究,並朝著更廣泛的物理法則一般化方向推進。此次成果顯示,AI 不僅能搜尋與整理
既有知識,還可能具備獨立發現人類尚未知曉之科學真理的能力。
心得/評論:
跟GPT5.2討論 這算不算流體智力的展現?
說以方法來看是用高維壓縮的晶體智力+暴力一致性搜尋找出來的
算是類流體 這部分有待商榷
但說以結果來看 例如有解決新結構問題 這樣可以算是流體智力?
用兩個GPT帳號討論了幾輪 突然覺得AI沒流體智力有差嗎?=_=
如果流體智力是像馬蓋仙那樣碰壁轉彎
AI不用碰壁無限暴力搜尋可以找到新發現 那好像也不見得要有流體智力?
沒流體智力也能辦到人類目前為止辦不到的事情啊(例如這篇新聞說的)
以上 祝福股板鄉民馬年發大財
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 146.70.31.57 (日本)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Stock/M.1771397311.A.4F4.html
1F:推 john11894324: 理論物理可能更近一步02/18 14:53
2F:推 stocktonty : 哪天會發現伺服器只是人類腦力極限才想到的低效方式02/18 14:55
3F:→ stocktonty : 耗能且低效 開發出比這個更快更簡單的運作系統02/18 14:56
4F:噓 Chilloutt : 新失業人口02/18 15:01
5F:推 kingofsdtw : 完了,以後不需要數學家了02/18 15:03
6F:推 yylin3266 : 未來會不會在論文上看到 GPT et. al.阿02/18 15:07
7F:推 Kobe5210 : 理論物理研究的速度可望因AI而加快02/18 15:07
8F:推 rainin : 噴 往下的那種02/18 15:08
9F:推 seemoon2000 : 仔細想想 包括蛋白質和數學用演算找出答案的 AI未02/18 15:10
10F:→ seemoon2000 : 來應該都能做得更好 畢竟他們一秒能出幾十種解02/18 15:10
11F:噓 strlen : 這不重要 奧覽較還我瑟瑟02/18 15:10
12F:推 ceca : 用AI解科學問題不是30年前就在做的事情?02/18 15:12
13F:→ ceca : 20年前我碩士也是用類神經解機構阿.02/18 15:12
14F:→ ceca : 現在大概就是跑快一點,延伸功能更方便一些.02/18 15:13
15F:推 heavenlyken : 更顯得研究生論文像垃圾02/18 15:14
16F:→ ceca : 在商業上取代很多工作,例如最近種災的設計業.02/18 15:14
17F:→ ceca : 是有可能.02/18 15:14
18F:→ ceca : 但是,用AI解科學問題,應該是早就全世界都這樣幹.02/18 15:14
19F:→ LoveSports : 這篇說的差別好像是在於GPT自己立假說02/18 15:17
20F:推 c928 : 假議題02/18 15:18
21F:推 seemoon2000 : 用AI解算法以前那麼強 就不會需要等deepmind破圍棋02/18 15:19
22F:推 peteryen : 很多研究生的論文就是在做新實驗而已,以前是土法02/18 15:22
23F:→ peteryen : 煉鋼一個一個試,以後就是能用更複雜更多組合去跑02/18 15:22
24F:→ peteryen : 模擬02/18 15:22
25F:推 kingofsdtw : 樓上太厲害啦! 一次n個變因02/18 15:23
26F:推 ceca : 整個AI是線性發展的,隨著台積電的晶片成長.02/18 15:23
27F:→ ceca : 除非是高算力才扯到算力中心.02/18 15:24
28F:→ kingofsdtw : AI無腦多02/18 15:24
29F:→ ceca : 因此不是"我們現在終於有AI"了..02/18 15:24
30F:→ ceca : 然後一夕之間大家都長翅膀可以飛天.02/18 15:24
31F:→ ceca : 而高算力中心主要是運算能力強大,速度快很多.02/18 15:24
32F:→ HiuAnOP : 失業增加!Ai續崩!02/18 15:24
33F:→ ceca : 但是以前...算一個AI算一個星期不是很常見.XD02/18 15:25
34F:推 seemoon2000 : 我就簡單說 以前那麼厲害 就不會要近代才能打敗在02/18 15:28
35F:→ seemoon2000 : 格子上下圍棋的人 是到近代深度學習才統一算法02/18 15:28
36F:推 jessicaabc98: C寶別亂扯了,留在房版好嗎02/18 15:30
37F:推 Sianan : openai!!02/18 15:33
38F:推 horse2819 : 歐噴醬 被看衰這麼久終於要爆發了?02/18 15:34
39F:推 ceca : 啥?連這個都不懂..難怪是魯空..哈哈哈.02/18 15:37
40F:→ ceca : 下圍棋是當下算.02/18 15:37
41F:→ ceca : 要是你給他每一步算1天.02/18 15:37
42F:→ ceca : 那早個五年也可以把棋王幹掉..XD02/18 15:38
43F:→ ceca : 所以為啥AI看著台積電的晶片..02/18 15:38
44F:→ ceca : 主要是運算速度問題.02/18 15:38
45F:→ ceca : 但內容,是1943的數學模型.02/18 15:39
46F:推 jessicaabc98: 好了啦C寶,你在想啥還在運算速度?02/18 15:39
47F:→ ceca : 然後到今天,還是再用類神經.02/18 15:39
48F:→ ceca : 你又沒改其他架構..大不了在一個模糊系統.02/18 15:39
49F:→ ceca : 也就是車子就是四顆輪子.02/18 15:39
50F:→ ceca : 你今天是F1..還是四顆輪子.02/18 15:40
51F:→ ceca : 阿就說你整個大外行我也很無奈..XD02/18 15:40
52F:噓 bj45566 : ceca 的發言真是笑死人wwww 三十多年前沒有 LLM 的02/18 15:40
53F:→ bj45566 : AI 配上當時破銅爛鐵的硬體連圍牆遊戲都被人類壓在02/18 15:40
54F:→ bj45566 : 地上摩擦好嗎?02/18 15:40
55F:→ ceca : 你大語言模型去解物理學公式..XD02/18 15:41
56F:→ ceca : 你不要笑死人好嗎..XD02/18 15:41
57F:→ ceca : 你要不要找一個簡單的AI程式入門看一下.02/18 15:41
58F:→ ceca : 了解一下到底AI是甚麼和你到底對AI的認知是怎樣.XD02/18 15:42
59F:→ ceca : 外加你沒聽老教授說.02/18 15:42
60F:→ ceca : 他們早年做研究.02/18 15:42
61F:→ ceca : 學校只有一個地方可以跑運算.02/18 15:42
62F:→ ceca : 還要去排隊送資料.02/18 15:42
63F:推 breathair : 奇點近了!02/18 15:43
64F:→ ceca : 外加20年前早就AI論文氾濫了..XD02/18 15:43
65F:噓 bj45566 : 講個笑話:三四十年前的類神經網路架構和現今的 LLM02/18 15:43
66F:→ bj45566 : AI 沒有什麼改變wwww02/18 15:43
67F:→ ceca : 那時候工科的一堆人動不動就要跟AI掛上邊.02/18 15:43
68F:→ ceca : 所以用AI去解科學,30年前就開始了,20年前就熱了.02/18 15:44
69F:→ ceca : 這邊念工程的一堆..他們自己想是不是.02/18 15:44
70F:推 nfsong : 奇點快到了 已經在脫離人類領域02/18 15:44
71F:推 wind93 : 原來不是gpt爛 是我沒有問他物理學?02/18 15:44
72F:推 ProTrader : 1990後AI冰河時期是因為類神經網路遇到模型瓶頸02/18 15:44
73F:→ nfsong : 樓上建議去爬一下 AI發展史02/18 15:44
74F:→ nfsong : 現在的AI和以前不是一個東西02/18 15:45
75F:→ breathair : Ceca 大,你需要請LLM幫你科普一下10年前跟現在AI的02/18 15:45
76F:→ breathair : 差別02/18 15:45
77F:→ ProTrader : 後來2005前後的優化論文才改名"深度學習"突圍02/18 15:45
78F:推 seemoon2000 : 就不懂 一開始講錯 後面努力要凹 何必討論02/18 15:45
79F:→ nfsong : 從Deep learning 到 GPT02/18 15:46
80F:→ ProTrader : 冰河時期類神經網路就像票房毒藥計劃肯定不會過02/18 15:46
81F:→ nfsong : GPT - Generative Pre-trained Transformer02/18 15:46
82F:噓 bj45566 : 笑死,沒有引進深度學習技術的 AI 連人臉辨識都跑得02/18 15:46
83F:→ bj45566 : 一塌糊塗好嗎,嘻嘻02/18 15:46
84F:→ nfsong : LLM transformer02/18 15:47
85F:→ nfsong : 上一個突破是 deepseek 邏輯推理02/18 15:47
86F:→ ProTrader : 當初人臉辨識 手寫數字文字辨識 是AI技術巔峰02/18 15:47
87F:→ ProTrader : 金融海嘯後深度學習在影像辨識大放異彩02/18 15:48
88F:→ nfsong : 類神經網路教父 都說不明白了02/18 15:48
89F:→ nfsong : 推進的太快 教父自己都被甩開了02/18 15:48
90F:→ ProTrader : 到之後AlphaGo算是讓AI揚眉吐氣02/18 15:49
92F:→ ProTrader : 再之後爆發是ChaGPT直到現在依然繼續02/18 15:50
93F:→ nfsong : Geoffrey Hinton deeplearning 教父02/18 15:50
94F:→ nfsong : 自己都有些跟不上了02/18 15:51
95F:→ ProTrader : 辛頓在AI冰河時期持續類神經網路的研究才優化模型02/18 15:51
96F:→ nfsong : 開頭這句話送給大家02/18 15:51
97F:→ ProTrader : 他是可以退休的年齡了跟不上很正常02/18 15:52
98F:→ nfsong : 你各位像是 坐第一排的好學生 啥都不懂02/18 15:52
99F:→ nfsong : 但是問題問得好02/18 15:52
100F:→ CYL009 : 全部人類都要失業www02/18 15:53
101F:推 nfsong : 不用的人類會失業02/18 15:54
102F:推 FULLHD1080 : 教父年紀大,沒有辦法吸收那麼多新的變化02/18 15:54
103F:→ nfsong : 用了以後AI會告訴你 去哪找工作02/18 15:54
104F:→ ProTrader : 要說AI跟以前相同在於本質上都還在找線性迴歸最佳解02/18 15:54
105F:推 a1234567289 : 現在LLM和1990左右的AI 概念上高度統一的 現在只02/18 15:54
106F:→ a1234567289 : 是有了Attention based的模型架構然後多了一個宣傳02/18 15:54
107F:→ a1234567289 : 名詞叫做深度學習02/18 15:54
108F:→ ProTrader : 各式各樣的多元資料與各種新模型本質還是線性迴歸02/18 15:55
109F:推 xerioc5566 : 貝氏定理02/18 15:55
110F:→ ProTrader : 但這不是說現在的AI真的跟199X年代的AI相同02/18 15:57
111F:→ a1234567289 : 1990神經網路是透過向後傳遞改變權重去回歸資料02/18 15:57
112F:→ a1234567289 : 讓他去資料中間找出pattern 跟現在LLM沒啥不同02/18 15:57
113F:推 nfsong : 問AI 就會告訴你02/18 15:57
114F:→ ProTrader : 就像2026的人類跟石器時代的人類都是人類但差異很大02/18 15:57
115F:→ nfsong : 2017以前的RNN CNN 和現在Transformer是不同東西02/18 15:58
116F:→ ProTrader : AI在理論與實務的進步是很直接明確可以驗證的02/18 15:58
117F:推 quanhwe : 某c咖又鬧笑話了 我怎麼說又了呢02/18 15:59
118F:→ ProTrader : 比方說生成式AI對人類的影響空前巨大02/18 16:00
119F:推 YCL13 : 大數據時代前後講的AI是不同等級的事情02/18 16:00
120F:推 nfsong : AlexNet (2012) ResNet (2015) GAN/AlphaGo02/18 16:00
121F:→ ProTrader : 很古早的時候也就生成亂數 生成電腦棋局對弈02/18 16:01
122F:推 a1234567289 : 現代跟當時的差異是 為了找出更細緻的pattern 後02/18 16:01
123F:→ a1234567289 : 來人們發明了Convolution/LSTM等OP Attention也是02/18 16:01
124F:→ a1234567289 : 在Loss function以及訓練方式都有了長足進展02/18 16:01
125F:→ ProTrader : 之前的A片要換臉 現在的A片可以直接生成02/18 16:02
126F:→ nfsong : AlphaGo除了層數變多 還增加了功能層(戰略層)02/18 16:02
127F:→ a1234567289 : 所以說不同也是不同 但本質精神都是用參數對資料做02/18 16:02
128F:→ a1234567289 : modeling02/18 16:02
129F:→ nfsong : AlexNet 8層 ResNet 152層02/18 16:03
130F:→ ProTrader : 所以要說現在206的AI 199X時代一樣是不對的02/18 16:03
131F:→ ProTrader : 202602/18 16:03
132F:→ a1234567289 : 因此我覺得ceca不算有說錯 只是它忽略了中間進步了02/18 16:03
133F:→ a1234567289 : 一大段02/18 16:03
134F:推 breathair : 基本可以看作transformer 架構前後AI完全不同,tran02/18 16:04
135F:→ breathair : sformer 範式讓智能「湧現」或是「頓悟」,哈薩比斯02/18 16:04
136F:→ breathair : 說,要到AGI,我們還差1-2次transformer等級的範式02/18 16:04
137F:→ breathair : 升級02/18 16:04
138F:→ a1234567289 : 現代的算力和參數差異 讓現在效果和當時有了巨大差02/18 16:04
139F:→ a1234567289 : 異02/18 16:04
140F:→ ProTrader : 比較好的說法是 都不是AGI強人工智慧02/18 16:04
141F:→ nfsong : 除了垂直的增加層數 還有橫向的增加層數02/18 16:04
142F:→ nfsong : 以前就是一層 modeling02/18 16:05
143F:→ nfsong : 現在幾百萬層02/18 16:05
144F:→ nfsong : AlphaGO 之所以開始輾壓 也是增加了 "戰略層"02/18 16:06
145F:→ nfsong : 有了大局觀02/18 16:06
146F:→ nfsong : 會判斷 那邊地盤大02/18 16:07
147F:推 ProTrader : 以前蓋茅草屋是人類要住 哈里發塔也是人類要住02/18 16:07
148F:推 xerioc5566 : 硬體限制突破 有無限想像02/18 16:07
149F:→ ProTrader : 可是說茅草屋跟哈里發塔真的不一樣02/18 16:07
150F:→ ProTrader : 蓋茅草屋跟哈里發塔都要土地 人類還沒進入異次元02/18 16:08
151F:→ ProTrader : 可是茅草屋跟哈里發塔的技術差異太大了02/18 16:09
152F:推 LonyIce : 不就圖靈的升級版02/18 16:11
153F:推 nfsong : 你可以看看Oliver Henry 的Openclaw agent02/18 16:14
154F:→ nfsong : 自動寫文案 生成影片 發布02/18 16:15
155F:→ nfsong : 然後用觀看率 來調整cta Call to Action02/18 16:16
156F:→ nfsong : 最近你會看到有些頻道 專注一些東西02/18 16:17
157F:→ nfsong : 女性打棒球02/18 16:18
158F:→ nfsong : 動物的故事02/18 16:18
159F:→ nfsong : Amazon 包裹小偷02/18 16:18
160F:→ nfsong : 這些都是自動發布的02/18 16:18
161F:推 windalso : 大統一場論更近了!?02/18 16:19
163F:→ nfsong : 像這種頻道 我看到有20幾個02/18 16:20
165F:→ nfsong : 比大聯盟的還好看02/18 16:23
166F:推 ProTrader : 沒用來生成跟多慧一起運動的影片 失敗02/18 16:23
167F:→ nfsong : 因為大聯盟 分鏡不可能 擺進場內02/18 16:23
168F:→ FatFatQQ : 房版魯多 賠超慘 在這胡言亂語 好慘02/18 16:29
169F:推 alex01 : 驗證完了嗎?02/18 16:37
170F:推 ivan1116 : 硬體變得越來越重要02/18 16:40
171F:推 truelove356 : 中國模型也解出來ㄌㄜ02/18 16:41
172F:推 littleliu : 還不頒個碩士學位給他02/18 16:50
173F:推 nakayamayyt : 電力用在這也是很好的利用了02/18 16:50
174F:推 sses60802 : 嗯嗯 跟我想的一樣02/18 16:52
175F:推 drph : 2奈米和28奈米本質上都是CMOS,所以概念上一樣,但02/18 16:58
176F:→ drph : 是製程精度和device結構不一樣。02/18 16:58
177F:推 herculus6502: 奇點將至?02/18 17:01
178F:推 nfsong : 奇點!!02/18 17:03
179F:推 sdbb : G點!?02/18 17:03
180F:推 Cactusman : 嗯嗯跟我想的一樣02/18 17:05
181F:推 Kobe5210 : 上個世紀<機器學習的AI>跟現在<深度學習的AI>,已02/18 17:05
182F:→ Kobe5210 : 經不是用28奈米到2奈米可以類比的了02/18 17:05
183F:→ Kobe5210 : 還是專心做股票比較好,強迫自己學東西放大人生格02/18 17:05
184F:→ Kobe5210 : 局跟財富02/18 17:05
185F:推 ericsonzhen : 數學系差不多要廢的意思?02/18 17:07
186F:推 cloud1030 : 又多一批失業仔02/18 17:12
187F:推 solomonABC : 審判日要來了嗎?02/18 17:15
188F:推 Arad : ai到最後到達的境界人類會無法理解02/18 17:15
189F:推 FlyBird : AI閉環快完成了,文明準備三級跳02/18 17:31
190F:推 overpolo : 恩恩 果然用在我身上是在浪費算力阿..02/18 17:36
191F:推 stcr3011 : 有可能嗎02/18 17:44
192F:推 WTS2accuracy: 某高雄炒房仔別丟臉了...不懂的領域就墊墊02/18 17:45
193F:推 abdiascat : 叫他自己自我優化 左腳踩右腳 直接飛天02/18 17:46
194F:推 coolmark01 : 硬體造就如今的AI,而AI將躍進下個未來02/18 17:54
195F:推 Beee09 : 叫ai找一下超導體02/18 17:55
196F:推 panzerbug : 讚02/18 18:04
197F:推 digodi : 當然還是要有數學物理學家啊,不然它亂跑出結果,誰02/18 18:05
198F:→ digodi : 能驗證。02/18 18:05
199F:推 et310 : 又要噴了嗎02/18 18:09
200F:推 poeoe : 還有人要喊AI泡沫嗎 笑死02/18 18:16
201F:推 Kobe5210 : 當然還是要有物理學家,愛因斯坦100年前的廣義相對02/18 18:18
202F:→ Kobe5210 : 論也是要有數學模型才能描述具體內容。現在的AI是02/18 18:18
203F:→ Kobe5210 : 極速幫忙算出結果02/18 18:18
204F:→ bnn : 跑simulation一直都有在改善算力運用的用法的02/18 18:23
205F:→ bnn : 不然那麼多人用超算跑 為啥是某些人發論文02/18 18:24
206F:推 xeins : 終於出來了? 不是被餵的資料 而是智慧的火花02/18 18:34
207F:推 NANJO1569 : Hassabis 主張 AGI 必須具備從 0 到 1 的原創能力02/18 18:36
208F:推 NANJO1569 : GPT5.2解開理論物理學中的未解問題也算往這方向邁進02/18 18:38
209F:→ NANJO1569 : Hassabis 認為真正的 AGI 必須在沒有人類干預的情況02/18 18:40
210F:推 ProTrader : 強人工智慧AGI更多是學術目標類似大統一理論02/18 18:40
211F:→ ProTrader : 真正打趴人類多數專家的應該是各領域的特化弱AI02/18 18:41
212F:→ NANJO1569 : 執行以下完整循環:1.提出問題2.產生假說3.實驗驗證02/18 18:41
213F:→ ProTrader : 現在市面上各類功能AI通通都是弱AI 未來會繼續變強02/18 18:42
214F:→ NANJO1569 : 4.總結反饋5.迭代進步02/18 18:42
215F:→ ProTrader : 我認為未來會出現多種弱AI集成的類AGI02/18 18:43
216F:→ ProTrader : 目前的AI模型並沒有達成AGI的可能性02/18 18:45
217F:→ ProTrader : 現在說的AGI廣告效果甚至大於學術討論02/18 18:47
218F:噓 newlie83 : 我只想問一個問題 AI得到諾貝爾物理獎還有多久?02/18 18:47
219F:→ s213092921 : 這麼厲害?那openAI獲利了嗎?02/18 19:14
220F:→ MyPetTankDie: 這本來就是實驗室分析用的東西,其他絕大多數都是濫02/18 19:24
221F:→ MyPetTankDie: 用而已02/18 19:24
222F:→ MyPetTankDie: ,民間發展那些說難聽點就是透過相對小的資本拐老闆02/18 19:25
223F:→ MyPetTankDie: 跟上潮流用的而已lol02/18 19:25
224F:推 wen880225 : 所以以後會變成戰鎚黃金時代那種科技全靠AI,人類都02/18 19:38
225F:→ wen880225 : 不懂原理只會用02/18 19:38
226F:推 mdkn35 : 我懂 a=b02/18 19:59
227F:推 JaccWu : Hassabis 不是認為目前科學上的終極目標02/18 20:14
228F:→ JaccWu : 是讓AI在只靠相對論提出前的數據、理論、知識02/18 20:14
229F:→ JaccWu : 找出相對論嗎?02/18 20:14
230F:→ JaccWu : (喔應該不能說終極目標 而是他給的一個標準02/18 20:15
231F:推 gglong : 算力即國力02/18 20:20
232F:推 LandaChuang : AI加上量子電腦,以後科學計算會飛速進展02/18 21:08
233F:推 k078787878 : 好扯02/18 22:01
234F:→ guteres : 我覺得C大應該是忽略了很大的一段02/18 22:21
235F:推 jodawa : 襪靠 覺得實在太屌02/18 22:37
236F:→ pantheraL : 我的gpt說這是假新聞02/18 23:17
https://openai.com/index/new-result-theoretical-physics/
可以貼這個給他看然後叫他開網路搜尋
不然他們新聞只知道上市大概半年以前的
237F:→ js0431 : 讚啦02/18 23:30
※ 編輯: LoveSports (95.173.204.121 日本), 02/19/2026 07:33:46
238F:→ ninggo : 我們用的ai是閹割降智版 02/20 15:42
239F:噓 yunf : 就只不過是像是質數一樣 又發現了一組特徵值 02/20 21:37
240F:→ yunf : 有多少人研究過膠子? 02/20 21:38