作者amberclover (年紀大了就是這樣)
看板Statistics
標題[問題] 檢定殘差不呈常態
時間Sat Nov 18 01:46:02 2023
在做正式分析前,我想先檢測資料是否符合迴歸分析的基本假設
如果我判讀沒錯,目前資料符合下面假設
1.自變項與依變項呈線性 2.殘差保持獨立性 3.殘差呈同質性
但是殘差的常態檢定沒有過,呈現顯著
上網找了很久,沒有找到殘差非常態時該如何處理
(已用k-s檢定樣本呈常態分配)
請問有比較建議的處理方式嗎?
或是我在哪可以找到說明or教學?
感謝
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.116.20.146 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Statistics/M.1700243165.A.20D.html
1F:→ locka: 好奇問個,有可能殘差獨立卻非常態嗎? 11/18 02:26
2F:→ yhliu: 當然可能誤差項非常態。(不是殘差,但誤差項是不可觀測的 11/18 07:31
3F:→ yhliu: 只能用觀測到的殘差代替。不過,殘差其實相互有負相關及變 11/18 07:33
4F:→ yhliu: 異數不等的問題。)檢定常態性,是把殘差當誤差來看待,用 11/18 07:35
5F:→ yhliu: q-q plot 觀察,或做 W 檢定,或 K-S 檢定。 11/18 07:37
6F:→ yhliu: 對於誤差項非常態分布的處理:如果是線性模型(迴歸模型) 11/18 07:38
7F:→ yhliu: 如果樣本數相當大,可以引用中央極限定理於迴歸係數的推論, 11/18 07:40
8F:→ yhliu: 或者針對其真正的分布導出 MLE 及迴歸係數之推論。迴歸模型 11/18 07:42
9F:→ yhliu: 之比較也是迴歸係數推論。廣義線性模型(link=identity)即是 11/18 07:44
10F:→ yhliu: 採用的是最大概似估計及概度比檢定。但如果只知非常態而不 11/18 07:46
11F:→ yhliu: 知正確分布,又不想用普通最小平方法,那可能需要用非參數 11/18 07:48
12F:→ yhliu: 化方法,也就是無母數方法。 11/18 07:49
13F:推 a22735557: 除非違反的很誇張,例如skewness kurtosis 差很多或是 11/18 08:50
14F:→ a22735557: 不明顯滿足empirical rule,不然通常還好,原因同樓上 11/18 08:50
15F:→ a22735557: 大大說的,residual 本身其實變異數就不同質等等 11/18 08:50
16F:→ a22735557: 我是建議不要用K-S直接下結論,因為這個檢定其實蠻難 11/18 08:52
17F:→ a22735557: 不顯著的,他的要求很嚴格,差一點點就可能會不顯著 11/18 08:52
18F:→ locka: 感謝2樓大大說明!我知道殘差(亦或誤差)是可能非常態分佈, 11/18 09:48
19F:→ locka: 但想問的是殘差有可能在「已知獨立」的情況下但卻「非常態 11/18 09:48
20F:→ locka: 」嗎?(以前都以為只要獨立就一定會是常態分佈…)有點想不 11/18 09:48
21F:→ locka: 明白,再請大大解惑,謝謝>"< 11/18 09:48
22F:→ amberclover: 感謝大大說明,為了這個超級煩惱. 再次感謝 11/18 10:17
23F:→ Pieteacher: Boxcox transform 11/18 19:40
24F:→ yhliu: 比如說 logistic 迴歸,Poisson 迴歸,前者每個觀測值不是 11/19 09:33
25F:→ yhliu: 0 就是 1, 後者觀測值是計數資料,與迴歸曲線之間就群體模 11/19 09:35
26F:→ yhliu: 型而言有誤差,就樣本值而言有殘差。殘差因為迴歸線就是這 11/19 09:36
27F:→ yhliu: 些資料去 fit 的,所以相互有相關;誤差則是觀測值與群體迴 11/19 09:38
28F:→ yhliu: 歸函數之間的差,觀測值相互獨立,誤差只是各觀測值減去一 11/19 09:40
29F:→ yhliu: 個理論上的期望值,當然還是相互獨立,但這些誤差怎麼可能 11/19 09:42
30F:→ yhliu: 常態分布?更別說要假設它們是 i.i.d. 常態。事實上如線性 11/19 09:43
31F:→ yhliu: 模型的 "誤差是 i.i.d. 常態" 只是一個分析者設立模型時的 11/19 09:45
32F:→ yhliu: 假設,這假設是否為真有時候需要檢驗,這就是殘差分析的項 11/19 09:46
33F:→ yhliu: 目之一。殘差是群體模型誤差項的替代或估計,因此從各種殘 11/19 09:48
34F:→ yhliu: 差圖可以看出很多東西,如迴歸函數適當否?誤差變四是否為 11/19 09:50
35F:→ yhliu: 常數?誤差項是否符合原假設的常態?有沒有離群點?是否有 11/19 09:51
36F:→ yhliu: 些影響點需要特別注意。關於誤差常態性的檢查,通常看 qq圖 11/19 09:53
37F:→ yhliu: W 檢定與 qq圖密切關聯,至於 S-K 檢定,其實它比較適合用 11/19 09:55
38F:→ yhliu: 在不需估計參數的資料,Box-Cox 轉換雖然可能改善誤差項的 11/19 09:56
39F:→ yhliu: 態使其較趨對稱也較接近常態,但也改變了迴歸函數式及相加 11/19 09:58
40F:→ yhliu: 性結構,但如果樣本不是太小,殘差顯示誤差項分布不是太偏 11/19 10:01
41F:→ yhliu: 則關於迴歸係數的推論,t 程序,F 程序就不用太擔心。 11/19 10:02
42F:→ yhliu: 前面 誤差項變異數 打成 誤差變四 . 11/19 10:06
43F:推 locka: 謝謝yhliu大大!非常清楚!! 11/19 11:47