作者yueayase (scrya)
看板Statistics
標題Re: [問題] 請問一題條件期望值
時間Sun Mar 26 11:47:35 2023
※ 引述《ppppppppp (凹嗚嗚)》之銘言:
: 幫朋友問
: Suppose X~exp(λ) and Y~exp(μ) are independent. Find E[X|X>Y]
: 我朋友的筆記寫的解法如下:
: Step1
: P(X>t, X>Y) = e^(-λt)-(λ/(λ+μ)*e^(-(λ+μ)*t))
: Step2
: P(X>t|X>Y)
: = P(X>t,X>Y)/P(X>Y)
: =(λ+μ)/μ*e^(-λt)-λ/μ*e^(-(λ+μ)*t)
: Step3
: P(X<=t|X>Y) = 1-P(X>t|X>Y)
: Step4
: E[X|X>Y] = 1/λ +1/(λ+μ)
: 請問Step4是怎麼從前三個步驟推導出來的?
: 謝謝
:
:
: ----
: Sent from BePTT on my Samsung SM-G9980
從Step3, f(x=t|X>Y) = dP(X<=t|X>Y)/dt = 1-dP(X>t|X>Y)/dt
= (λ+μ)λ/μe^(-λt)-(λ+μ)λ/μe^(-(λ+μ)*t)
= (λ+μ)λ/μ[e^(-λt)-e^(-(λ+μ)*t)]
∞
E[X|X>Y] = ∫ tf(x=t|X>Y)dt
0
∞
= (λ+μ)λ/μ∫t[e^(-λt)-e^(-(λ+μ)*t)]dt
0
∞ ∞
= (λ+μ)λ/μ[∫te^(-(λ*t)dt-∫te^(-(λ+μ)*t)dt]
0 0
= (λ+μ)λ/μ[1/λ^2-(λ+μ)^2]
= (λ+μ)/λμ-λ/[μ(λ+μ)]
2 2
(λ+μ) - λ
= --------------
λμ(λ+μ)
2
μ + 2λμ
= ------------
λμ(λ+μ)
μ + 2λ
= ------------
λ(λ+μ)
(μ+λ)+λ
= -----------
λ(λ+μ)
= 1/λ + 1/(λ+μ)
∞ -bt ∞ -u
PS: ∫ te dt = ∫ u/b e du/b = Gamma(2)/b^2 = 1!/b^2 = 1/b^2
0 0
另外,Step2可以推到Step4
利用X is a nonnegative random variale
Then
∞
E[X] = ∫ P(X>t)dt
0
∞
E[X|X>Y] = ∫ P(X>t|X>Y)dt
0
∞
= ∫ [(λ+μ)/μ*e^(-λt)-λ/μ*e^(-(λ+μ)*t)]dt
0
∞ ∞
= (λ+μ)/μ∫e^(-λt)dt-λ/μ∫e^(-(λ+μ)*t)dt
0 0
= (λ+μ)/μ*1/λ-λ/μ*1/(λ+μ)
2 2
(λ+μ) - λ
= --------------
λμ(λ+μ)
2
μ + 2λμ
= ------------
λμ(λ+μ)
μ + 2λ
= ------------
λ(λ+μ)
(μ+λ)+λ
= -----------
λ(λ+μ)
= 1/λ + 1/(λ+μ)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.227.16.171 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Statistics/M.1679802457.A.657.html
※ 編輯: yueayase (61.227.16.171 臺灣), 03/26/2023 12:12:49
1F:推 ppppppppp: 謝謝您 03/26 13:46
2F:推 Rhomboid: 好奇請問 怎樣在PTT打出這些公式的? 03/27 10:11
3F:推 jangwei: pcman 有內建特殊符號輸入 03/30 02:43