The so called pigeon hole principle is nothing more than the obvious remark:
if you have fewer pigeon holes than pigeons and you put every pigeon in a
pigeon hole, then there must result at least one pigeon hole with more than
one pigeon.
╔═════════════════════════════════════╗
║Pf: ║
║ ║
║已知有m隻鴿子(pigeon),n個鴿籠(hole),m > n,m ,n 為非零的自然數 ║
║ ║
║假設在同一個hole裡面不會有超過兩隻pigeon, ║
║ ║
║∴在每個洞只會有0隻或是1隻pigeon ==> 則n個hole總共有n × 1 = n隻pigeon, ║
║ ║
║又∵每隻pigeon都在hole裡面了, ║
║ ║
║∴ n = m 和已知矛盾,故得証 ║
╚═════════════════════════════════════╝
各位覺得這樣子的証明行嗎?
--
說實在的,為什麼要搞這種trivial東西的証明啊?! 浪費生命><"""
--
※ 編輯: windperson 來自: 140.112.241.93 (09/26 02:03)