NTU-Exam 板


LINE

課程名稱︰微積分乙 課程性質︰必修 課程教師︰陳俊全 開課學院:醫學院 開課系所︰醫學系、牙醫系 考試日期(年月日)︰114/12/18 考試時限(分鐘):120 試題 : Part I: Answer all the problems (1.-3.) below 1.(10%) True or False. (a) There is a differentiable function f such that f(-2)=-2, f(2)=6, and f'(x)<1 for all x. (b) If f(x) is integrable on the closed interval [a,b], then there exists a b number c∈[a,b] such that∫ f(x)dx= f(c)(b-a). a x t^2 √(1+u^4) (c) Let f(x)=∫∫ ───── du dt with x>0 and t>0. Then f(x) has a local 1 √t u minimum at x=1. f'(x) (d) If lim ─── can not be determined, according to L'Hopital's Rule, x→∞ g'(x) f'(x) lim ─── does not exists. x→∞ g'(x) t (e) If f(x) is continuous on [0,1] and f(0)=0, then ∫√(1+[f'(x)]^2)dx≧ √(t^2+[f(t)]^2) for 0≦t≦1. 0 2.(45%) ∞ (a)(6%) Evaluate the integral ∫x^(-2) ln(1+x^2) dx. 1 sin^2(x) (b)(6%) Evaluate the integral ∫───── dx. 1+sin^2(x) (c)(7%) Compute the volume of the solid obtained by rotating y=(x^2+4x+7)^(-¼) , 0≦x≦2, about the x-axis. (d)(6%) Find the limit 6 6*2 6*3 6n lim (─────+─────+─────+...+─────). n→∞ n^2+3*1^2 n^2+3*2^2 n^2+3*3^2 n^2+3*n^2 1 1 (e)(6%) Evaluate lim ( ─-────). x→0+ x arctanx (f)(7%) Show that |(66)^⅓ -4-(1/24)|<1/(9*256). (g)(7%) Prove that (1+x)^p≧1+px if p≧1 and x≧0. 3.(15%) The Euler's gamma function Γ(x) is defined as ∞ Γ(x)=∫ t^(x-1) e^(-t) dt, x>0. 0 (a)(3%) Compute Γ(1). (b)(6%) Show that Γ(x+1)=xΓ(x) for x>0 ∞ (c)(6%) It is well known that ∫ e^(-x^2/2)dx=√(2π). Use this fact to compute Γ(1/2) -∞ ─────────────────────────────────────── Part Ⅱ: Choose 2 of the following 5 problems (4.~8.) and solve them. 4.(15%) (1) Assume that f is continuous on [0,1] and n∈N. Evaluate the limit 1 lim ∫f(x)x^n dx. x→∞ 0 (2)Assume that f' exists and is continous on [0,1] and n∈N. Evaluate the limit 1 lim n∫f(x)x^n dx. x→∞ 0 (3) If we only assume that f is continuous on [0,1], does 1 lim n∫f(x)x^n dx exists? x→∞ 0 5.(15%) Solve the differential equation N'(t)=N(t)(N(t)-2)(1-N(t)/5). Show that if N(0)>2, then lim N(t)=5. t→∞ 6.(15%) Let α∈R. Use Taylor's Theorem to show that α(α-1) α(α-1)...(α-n+1) (1+x)^α=1+αx+────x^2+...+──────────x^n+... for |x|<1. 2! n! In the following problems, you can use the property that a closed interval [a,b] is compact: every sequence in [a,b] has a subsequence which converges to a point in [a,b]. 7.(15%) Show that a continuous function f on [0,2] is uniformly continuous and 2 1 2 lim ∫ f(x)[1-─sin^2(nx)]dx=∫f(x)dx. n→∞ 0 n 0 8.(15%) Show that a continuous function on [0,2] is integrable. Happy Winter Vacation!! --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.240.191 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1766241318.A.ECA.html







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:WOW站內搜尋

TOP