NTU-Exam 板


LINE

課程名稱︰計量經濟理論一B 課程性質︰經研所必修 課程教師︰郭漢豪 Hon Ho Kwok 開課學院:社科院 開課系所︰經濟系 考試日期(年月日)︰111.12.22 考試時限(分鐘):180 試題 : 註:部分數學式以LaTeX語法撰寫 1. Constraint Least Squares (20 points) This question is about the statistical properties of constraint least square (C LS) estimators. Suppose we have the following linear model: y_i = x'_i\beta + e_i with E(x_ie_i)=0. y_i is the endogenous variable. x_i is the k*1 column of exo- genous variables. \beta is the k*1 column of parameters of interest. The CLS e- stimator is the solution of minimizing SSE(\beta) = \sum_{i=1}^n (y_i-x'_i\beta)^2 subject to the constraint R'\beta = c. R is a k*q matrix. c is a q*1 column. Define X as the n*k matrix whose i-th row is x'_i. Define y as the n*1 column whose i-th entry is y_i. First, derive the CLS estimator, \tilde{\beta}_{CLS}, by solving the constrain- ed minimization problem. Recall that the ordinary lest squaire (OLS) estimator, \hat{\beta}_{OLS}, is (X'X)^{-1}X'y. Show that \tilde{\beta}_{CLS} = \hat{\beta}_{OLS} - (X'X)^{-1}R[R'(X'X)^{-1}R]^{-1}(R'\hat{\beta}_{OLS}-c). Second, verify that the CLS estimator satisfies the constraint R'\beta=c/ Third, prove that the CLS estimator is consistent and asymptotically normal. 2. M-estimators (40 points) The data consists of a sequence of observed vectors w_i = (y_i,x'_i)' where i= 1,...,n. The scalar y_i denotes the dependent (endogenous) variable. The column x_i is the k*1 vector of dependent (exogenous) variables. The scalar m_i=m(w_i;\theta) is a function of w_i, where \theta is the p*1 vector of para- meters. The true parameter vector is denoted by \theta_0. The function m(w_i;\theta) is twice continuously differentiable with respect to \theta for all w_i. An extremum estimator is an M-estimator if the criterion function is a sample average: Q_n = \frac{1}{n}\sum_{i=1}^n m(w_i;\theta). We have the following notation for first and second derivatives: s_i = s(w_i;\theta) = \frac{\partial m(w_i;\theta)}{\partial\theta} and H_i = H(w_i;\theta) = \frac{\partial^2 m(w_i;\theta)}{\partial\theta\partial\theta'}. 2.1 M-Estimator Asymptotics (20 points) The M-estimator \hat{\theta} is the maximizer of Q_n(\theta) (assume it is uni- que). We have the following two assumptions. First, the M-estimator \hat{\theta} is a consistent estimator of \theta_0. Second, \frac{1}{\sqrt{n}}\sum_{i=1}^n s(w_i;\theta_0) converges to Normal(0,\Sigma) in distribution where \Sigma is p*p and positive definite. Show that the M-estimator is asymptotically normal and write down the asymptotic variance of the M-estimator. 2.2 Maximum Likelihood (20 points) Let f = f(y_i|x_i;\theta) be the conditional density of y_i given x_i and \theta. Then the maximum likelihood estimator of \theta_0 is a special case of the M-estimator where m_i = \log f_i. It is assumed that f(y_i|x_i;\theta)>0 for all (y_i,x_i) and \theta, so it is legitimate to take logs of the density function. We consider the following linear regression model: y_i = x'_i\beta + e_i where the scalar e_i is normally distributed with zero mean and variance \sigma^2. The log conditional density for observation i is \log f(y_t|x_t;\beta,\sigma^2) = -\frac{1}{2}\log(2\pi) - \frac{1}{2}\log(\sigma^2) - \frac{(y_t-x'_t\beta)^2}{2\sigma^2}. Derive the conditional ML estimator of the parameters and write down the asymp- totic variance of the estimator. Is the conditional ML estimator of \sigma^2 unbiased? 3. Generalized Method of Moments (GMM) (20 points) The data consists of a sequence of observed vectors w_i=(y_i,x'_i,z'_i)' where i=1,...,n. The scalar y_i denotes the dependent (endogenous) variable. The col- umn x_i is the k*1 vector of independent variables (which are potentially endo- genous). The column z_i denotes the l*1 vector of instruments (which are exoge- nous). The l*1 vector g_i=g(w_i;\theta) is a function of w_i, where \theta is the p*1 vector of parameters. The true parameter vector is denoted by \theta_0. We have the following l moment conditions E(g_i) = 0. The GMM criterion function is Q_n(\theta) = \frac{1}{2} g_n(\theta)'\hat{W}g_n(\theta) where g_n(\theta) = \frac{1}{n}\sum_{i=1}^n g(w_i;\theta), and \hat{W} is a l*l matrix which is symmetric and positive definite. The weig- ht matrix \hat{W} converges in probability to W, which is also l*l and positive definite. The covariance matrix of g_i is denoted by S = E(g_ig'_i). In this question, we consider the following linear model: y_i = x'_i\beta + e_i, and the moment conditions arer E(g_i) = E(z_ie_i) = 0 where the scalar e_i is the unobserved exogenous variable (or the regression e- rror) and i=1,...,n. You may use the following notation. Y is the n*1 columns whose i-th entry is y_i. X is the n*k matrix whose i-th row is x'_i. Z is the n*l matrix whose i-th row is z'_i. E is the n*1 column whose i-th entry is e_i. The population and sample covariance matrices are denoted as follows: \sigma_{xy} = E(x_iy_i) \Sigma_{xz} = E(x_iz'_i) s_{xy} = \frac{1}{n}\sum_{i=1}^n x_iy_i, and S_{xz} = \frac{1}{n}\sum_{i=1}^n x_iz'_i. First, please derive the GMM sample error \hat{\theta} - \theta. Second, prove that the GMM estimator is consistent. Third, prove that the GMM estimator is asymptotically normal and derive the asymptotic covariance matrix of the effic- ient GMM estimator. Please writhe your arguments clearly. 4. Minimum Distance Estimators (20 points) Suppose \theta is the p*1 vector of the parameters of interest. \theta_0 denot- es the true parameter column. The s*1 vector \pi is a column of the reduced fo- rm parameters and we know that \pi=h(\theta), where h is a known continuously differentiable function. h is not a function of sample size n. \pi_0=h(\theta_0) denotes the true value of \pi. \hat{\pi} is a consistent est- imator of \pi_0. And we know that \sqrt{n}(\hat{\pi}-\pi_0) converges in distr- ibution to N(0,\Xi_0). \hat{\Xi} is a consistent estimator of \Xi. The criterion function for the minimum distance estimator is Q(\theta,\hat{W}) = (\hat{\pi}-h(\theta))'\hat{W}(\hat{\pi}-h(\theta)), where \hat{W} is a s*s positive definite matrix. \hat{W} converges in probabil- ity to W, which is also positive definite. The minimum distance estimator is the \theta which minimizes Q. First, write down the first order conditions for the minimum distance estimator and state the identification condition. Is it necessary that s>=p? Explain your answer. Second, prove that minimum distance estimator is asymptotically normal. Write down the asymptotic covariance matrix for a general weight matrix W. What is the optimal choice of the weight matrix W? What is the probabilistic limit of the minimized objective function Q? What is the asymptotic distribution fo the minimized nQ(\theta,\hat{W}) with the optim- al weight matrix? --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.151.175 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1686632815.A.C2F.html







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Soft_Job站內搜尋

TOP