NTU-Exam 板


LINE

課程名稱︰數量方法入門 課程性質︰經研所必修 課程教師︰朱玉琦 開課學院:社科院 開課系所︰經濟所 考試日期(年月日)︰110.08.30 考試時限(分鐘):180 試題 : 部分數學式以latex語法呈現。 Preamble: You have 3 hours to answer the following questions. The total number of points is 110. You need to answer each questions in English. If you have stated a theorem in lecture notes (including homework), you may use it without proving it unless I explicitly ask you to, but you need to describe what the theorem is and why you can apply that theorem. For example, if there are some assumptions for that theorem to be applicable, you need to show that those assumptions are met in your problem. If a theorem is famous, e.g. implicit function theorem, you can simply refer this theorem by its name. 1. (18 points) Let S = \Set{x\in\R | x=1-1/n, n\in\Z^+}\cup\Set{1}. Is S closed ? Is it comapct? Is it convex? 2. (8 points) Consider f : \R^n\to\R. Define U_f(\overline{v})=\Set{x | f(x)\geq\overline{v}} where \overline{v}\in\R . Show that U_f(\overline{v}) is a convex set for every \overline{v} if f(θx^a+(1-θ)x^b)\geqθf(x^a)+(1-θ)f(x^b) for all x^a and x^b and for all θ\in[0,1]. 3. (8 points) Consider f : \R^n\to\R^1 and \nabla f(x)\neq0 for all x. Let D be an open set in \R^n. SHow that the solution of \max{f(x)|x\in D} does not exist. 4. (6 points) Consider f : [a,b]\to\R, and its derivatives exist at every point in (a,b) and f continuous at both end points. Assume that f'(x) > 0 for all x \in (a,b). Prove that f(b) > f(a). 5. (12 points) Consider a function f : \R^3\to\R as follow: f(x1,x2,x3) = (x1x2+x3^2)/(x1^2+x2^2+2x3^2) if (x1,x2,x3)\neq(1,1,1) = 0 if (x1,x2,x3)=(1,1,1). (a) Show that f is not continuous at (1,1,1). (b) SHow that the 1st-order derivetive of f() wrt x3 does not exist at (1,1,1) 6. (10 points) Discuss why the following proofs are incorrect: (a) Consider f : S\subset\R\toR, where S is an open set in \R. Assume that f is continuous at a point c in S and that f(c) > 0. Prove that there exists an open set U \subset S such that for all x\in U, f(x) > 0. Proof: Because f(c) is an interior point of (0,\infty), there exists a \delta>0 such that B(f(c),\delta)\subset(0,\infty). Because B(f(c),\delta) is an open set in \R, its inverse image f^{-1}(B(f(c),\delta)) is open in S. Therefore, we find and open set U = f^{-1}(B(f(c),\delta)) in S such that for all x \in U, f(x)\in B(f(c),\delta)\subset(0,\infty), implying that f(x)>0. (b) Prove that if S_1 and S_2 are compact then S_1+S_2 is compact. Proof: Pick any sequence {z_n} and z_n\in S_1+S_2 for all n. We want to show that we can find a convergent subsequence of {z_n} such that its limit z is in S_1+S_2. Because z_n\in S_1+S_2, this implies that we can find a point x_n\in S_1 and y_n\in S_2 such that z_n=x_n+y_n. Because S_1 is compact, and {x_n} is a seque- nce in S_1, we can find a convergent subsequence of {x_n}, denoted by {x_{k(n)} such that \lim_{n\to\infty}x_{k(n)}=x\inS_1. Because S_2 is compact, and {y_n} is a sequence in S_2, this implies that its subsequence {y_{k(n)} converges to a a point y\in S_2. Therefore, we find a subsequence {z_{k(n)}} converges to z=x+y, and z\in S_1+S_2, which complete that proof. 7. (10 points) Consider a function Q=5K^{0.5}L^{0.5}. Currently, it is using the input bundle (K,L)=(1,1). It's clear that Q=5 when (K,L)=(1,1). (a) Use the first-order Taylor approximation to estimate the output when both inputs increase by 0.5 units. (b) Use the second-order Taylor approximation to estimate the output when both inputs increase by 0.5 units. 8. (20 points) Consider the following utility maximization problem. A consumer maximizes that \max_{x1,x2}U(x1,x2)=x1+a\log(x2), where a is a positive consta- nt number. The constraint set is D(p1,p2,I)=\Set{(x1,x2)\in\R^2 | p1x1+p2x2\leq I, x1 and x2\geq0}, where p1>0 and p2>0. In class, we have checked that the solution to the problem exists and the constraint qualification holds for all possible cases of solutions, and the derivatives exist, so the solution must satisfy the Kuhn-Tucker first-order co- nditions. Now answer the following questions: (a) (8 points) Set up the Lagrangian function and write down all the 1st-order conditions of Kuhn-Tucker. (b) (2 points) Prove that for all x1 > 0 and x2 = 0 cannot be the optimal solu- tion. You only have to check the Inada condition. (c) (10 points) Show that x1^*=0 and x2^*=I/p2 if I\leq ap1, and that x1^* = (I-ap1)?p1 and x2^* = ap2/p2 if I-ap1 > 0. --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.241.100.193 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1656094012.A.1D2.html ※ 編輯: unmolk (111.241.100.193 臺灣), 06/25/2022 02:31:17







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:e-shopping站內搜尋

TOP