NTU-Exam 板


LINE

課程名稱︰凸函數最佳化 課程性質︰電機所選修 課程教師︰蘇柏青 開課學院:電資學院 開課系所︰電機所 考試日期(年月日)︰108.06.20 考試時限(分鐘):100 試題 : 註:以下部分數學符號與式子以LaTeX語法表示。 1. (15%) Consider the convex unconstrained optimization problem whose variable is x \in R^2: minimize f_0(x) = [x_1 x_2][5 1 \\ 1 5][x_1 x_2]. We will study some types of descent methods in this problem. (a) (3%) Find \nabla f_0, the gradient of f_0 for any x \in R^2. (b) (4%) Find \nabla^2f_0, the Hessian of f_0 for any x \in R^2. (c) (3%) Suppose the initial point is chosen to be x^{(0)} = [3 2]^T. Find the gradient descent direction \Delta x_{gd} (d) (5%) Again, let the initial point be x^{(0)} = [3 2]^T. Find the Newton st- ep \Delta x_{nt} 2. (45%) Consider the convex piecewise-linear minimization problem minimize \max_{i=1,...,m} (a_i^Tx + b_i) -- (1) with variable x \in R^n. Suppose the optimal value is attained and is p^*. (a) (5%) Find the Lagrange dual function of the problem (1). (b) (5%) Consider an equivalent problem minimize \max_{i=1,...,m} y_i -- (2) subject to a_i^Tx + b_i = y_i, i = 1,...,m, with variables x \in R^n, y \in R^m. Find the Lagrange dual function of problem (2). (c) (5%) Derive the dual problem for problem (2). (d) (5%) Formulate the piecewise-linear minimization problem (1) as an equival- ent LP. (Hint: by introducing a slack variable s and putting it in the objective function.) (e) (10%) Form the dual problem of the LP you obtained in (d). (f) (5%) For the LP you obtained in (d) (with variable \bar{x} = (x,s) \in R^{n+1}), and given the barrier method's parameter t, formulate the a- pproximated equality constrained (or unconstrained) problem. (g) (10%) Write down the KKT conditions of the problem you obtained in (f). 3. (25%) Consider the problem minimize (1/2)x^Tx + c^Tx subject to Ax \preceq b -- (3) where A \in R^{m\times n}. Suppose you are going to apply the barrier method to this problem, whose objective function is denoted f_0 and constraint functi- ons f_i, i=1,...,m. You can denote a_i^T by the ith row of the matrix A. (a) (10%) Derive tf_0 + \phi as a function of x, where t is any given positive number and \phi denotes the logarithmic barrier for problem (3). (b) (15%) For any given strictly feasible point x of (3), derive the Newton st- ep \Delta x_{nt} at for the "approximated" problem minimize _x tf_0 + \phi for any given t>0. 4. (15%) For the following pairs of proper cones K \subseteq R^q and functions \psi : R^q -> R, determine whether \psi is a generalized logarithm for K. Just- ify your answers. (a) (5%) K = R^3_+, \psi(x) = \log x_1 + 2\log x_2 + 3\log x_3. (b) (5%) K = R^3_+, \psi(x) = \log(x_1 + x_2 +x_3). (c) (5%) K = R^2_+, \psi(x) = \log x_1 - \log x_2. --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.241.115.36 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1624559239.A.489.html







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Tech_Job站內搜尋

TOP