NTU-Exam 板


LINE

課程名稱︰凸函數最佳化 課程性質︰電機所選修 課程教師︰蘇柏青 開課學院:電資學院 開課系所︰電機所 考試日期(年月日)︰110.06.24 考試時限(分鐘):100 試題 : 註:以下部分數學符號與式子以LaTeX語法表示。 Exam policy: Open book. You can bring any books, handouts, and any kinds of pa- per-based notes with you. Use of electronic devices (including cellphones, lap- tops, tablets, etc.), however, is strictly prohibited, with the only exception being: 1. Reading materials on the course website NTU Cool. Note: the total score of this exam is 150 points. 1. (60%) For each of the following optimization problems, find (i) the Lagrang- ian L(x, \lambda, \nu), (ii) dual function g(\lambda, \nu) along with its doma- in dom g, (iii) the dual problem, (iv) the KKT conditions for the optimal prim- al and dual variables (x^*, \lambda^*, \nu^*). (a) (5%+5%+5%+5%) minimize c^Tx subject to Ax \preceq b where A \in R^{m\times n}, b \in R^m, and c \in R^n. (b) (5%+5%+5%+5%) minimize x^TP_0x subject to x^TP_1x <= 1 Ax = b where P_0, P_1 \in S^n_{++}. (c) (5%+5%+5%+5%) minimize 2x_1-3x_2+2x_3 subject to x_1[1 0 \\ 0 1] + x_2[1 -1 \\ -1 1] + x_3[2 -1 \\ -1 1] \preceq _{S^2_+} [0 1 \\ 1 0]. Hint: the Lagrange multiplier for this problem is in the form of a symmetr- ic matrix. You can use the notation Z, as in, e.g., L(x, Z) and g(Z), etc. 2. (16%) For the following pairs of proper cones K \subseteq R^q and function \psi: R^q -> R, determine whether \psi is a generalized logarithm for K. If so, find the degree of the generalized logarithm. Justify your answers. (a) (8%) K = R^3_+, \psi(x) = \logx_1 + 2\logx_2 + \logx_3. (b) (8%) K = R^3_+, \psi(x) = \log(x_1 + x_2 + x_3). 3. (14%) Consider the inequality constrained problem minimize c^Tx subject to Ax \preceq b and its approximated problem minimize tc^Tx + \phi(x) where \phi(x) = \sum_{i=1}^m-\log(b_i - a_i^Tx) with a_i^T being the ith row of A. We assume A \in R^{m\times n}, b \in R^m, and c \in R^n. Let f_0 : R^n -> R be defined as f_0(x) = tc^Tx + \phi(x) where t>0. (a) (14%) Derive \nabla f_0(x) and \nabla^2 f_0(x). Write the answers in terms of A, b, c, x, and t. 4. (60%) True and false. There are 20 questions in this section. For each ques- tion, you can choose to write down your answer (T of F) or leave it blank. Sup- pose the numbers of correct answers, wrong answers are n_c and n_w. Then the s- core you get from this section is \max{3\cdot n_c - 3\cdot n_w, 0}. Note that n_c + n_w + n_b = 20 where n_b is the number of problems left blank. You don't have to justify your answer. 1. A cone K \subseteq R^n is called a proper cone if it is convex, open, solid, and pointed. 2. A cone K is said to be solid if int K \neq \empty. 3. A cone K is said to be pointed if for any x, x \in K \ {0} => -x \in K. 4. Given a generalized inequality on R^n, the minimal element of a subset S of R^n either is unique or does not exist. 5. The dual function of an optimization problem is concave if and only if the primal problem is a convex optimization problem. 6. The dual function g(\lambda, \nu) gives a lower bound of the optimal value of the primal problem whenever g(\lambda, \nu) > -\inf and \lambda \geq 0. 7. The weak duality (d^* \leq p^*, where p^* and d^* are the optimal values of the primal and dual problems, respectively) holds only when the primal prob- lem satisfies the Slater's conditions. 8. The strong duality (d^* = p^*) holds only when the primal problem is convex and satisfies the Slater's conditions. 9. Let E be the ellipsoid E = {x | (x-x_0)^TA^{-1}(x-x_0) \leq 1}, where A \in S^n_{++}. THen, the condition number of E is cond(E) = \lambda_{max}(A) / \lambda_{min}(A). 10. The steepest descent method coincides with the gradient descent method when the norm associated with the steepest descent method is chosen as the quad- ratic norm determined by the Hessian of the objective function at the opti- mal point (i.e., \nabla^2f(x^*)). 11. An important feature of the Newton step is that it is independent of linear (or affine) changes of coordinates. 12. Let ||\cdot|| be any norm on R^n. The normalized steepest descent direction with respect to the norm ||\cdot|| is defined as \Delta x_{nsd} = arg min_v {\nabla f(x)^Tv | ||v|| = 1}. 13. Let P \in S^n_{++} and consider the quadratic norm ||\cdot||_P. The steepe- st descent step with respect to ||\cdot||_P is given by \Delta_{sd} = -P^{-1}\nabla f(x) where f is the objective function of an u- nconstrained minimization problem of interest. 14. If \psi : R^n -> R is a generalized logarithm for a proper cone K \subseteq R^n, then y^T\nabla\psi(y) = \theta for some \theta. 15. Suppose K \subseteq R^n is a proper cone and K^* is its dual cone. If \psi : R^n -> R is a generalized logarithm for K^*, then y \prec _{K^*} 0. 16. Consider the positive semidefinite cone S^p_+ and a function f : S^n -> R, dom f = S^p_{++}, f(X) = \log detX^2. Then f is a generalized logarithm wi- th degree 2p. 17. The KKT conditions for the problem with generalized inequalities minimize f_0(x) subject to f_i(x) \preceq _{K_i} 0 where f_0 : R^n -> R is convex, f_i : R^n -> R^k are K_i-convex, and K_i \subseteq R^{k_i} are proper cones, are f_i(x^*) \preceq _{K_i} 0, \lambda_i \succeq _{K_i^*}, (\lambda_i^*)^Tf_i(x^*) = 0, \forall i = 1,..,m , and \nabla f_0(x^*) + \sum_{i=1}^mDf_i(x^*)^T\lambda_i^* = 0. 18. Let K \subseteq R^q be a proper cone. If f : R^n -> R^q is K-convex, then f must also be a convex function. 19. Consider the problem with generalized inequalities minimize f_0(x) subject to f_i(x) \preceq _{K_i} 0, i = 1,...,m where f_0 : R^n -> R is convex, f_i : R^n -> R^k are K_i-convex, and K_i \subseteq R^{k_i} are proper cones, and let \psi_i, i = 1,...,m be gen- eralized logarithms for K_1,...,K_m, respectively. Then, the central points of the problem are characterized by t\nabla f_0(x) + \sum_{i=1}^mDf_i(x)^T\nabla\phi_i(-f_i(x)) = 0. 20. The phase I problem defined as minimize s subject to f_i(x) \leq s, i = 1,...,m Ax = b is always strictly feasible, given that b is in the column space of A and f_i is convex for all i = 1,...,m. --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.241.115.36 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1624557855.A.790.html
1F:推 WSpider : 期末大放送>///< 06/25 13:54
2F:→ unmolk : 佛心公司>< 06/25 14:03







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Gossiping站內搜尋

TOP