NTU-Exam 板


LINE

課程名稱︰凸函數最佳化 課程性質︰電機所選修 課程教師︰蘇柏青 開課學院:電資學院 開課系所︰電機所 考試日期(年月日)︰108.04.25 考試時限(分鐘):120 試題 : (註:以下部分數學式以latex語法書寫) 1. (30%) For the following optimization problems, determine whether each of th- em is (1) a convex optimization problem, (2) an LP, (3) a QP, (4) a QCOP, (5) a SOCP. Write your answer as atable of 4 rows and 5 columns, with each entry bei- ng T (yes), F (no), or left blank. The score you get in this section is s = max{0, 1.5n_c - 3n_w} where n_c and n_w are the numbers of correct answers and wrong answers (not including those left blank). (a) minimize c^{T}x subject to x_{1}^2 + x_{2}^2 + ... + x_{n}^2 ≦ 1 where c \in R^n. (b) minimize 3x_1 + 2x_2 + x_3 subject to \sqrt{x_{1}^2 + 4x_{2}^2 + 9x_{3}^2} ≦ 2x_1 + x_2 (c) minimize (x_{1}^3 + x_{2}^3 + x_{3}^3)^{1/3} subject to x_1 - x_2 = 1 x_1 - x_2 + x_3 ≦ 0 (d) minimize x_{1}^2 + x_{2}^2 + x_{3}^2 subject to -3x_1 - 4x_2 - 5x_3 ≦ 1 2. (30%) For each of the following sets, prove or disprove if it is convex. If it is, write down your proof (i.e. showing that for any x and y in the set and for any θ \in [0,1], θx + (1-θ)xy is also in the set). If it is not convex, please find x, y, and θ that violate the convex property described above. (a) C_1 = {a \in R^k | p(0) = 1, |p(t)|≦1 for -3≦t≦5} where p(t) = a_1 + a_{2}t + ... + a_{k}t^{k-1}. (b) C_2 = C_1 - 2C_2 where C_1 \subseteq R^k and C_2 \subseteq R^k are both co- nvex sets. (c) C_3 = {x \in R^k | (|x_1|^{1/2} + |x_2|^{1/2} + ... + |x_k|^{1/2})^2≦1}. (d) C_4 = {x \in R_{++}^k | \Pi_{i=1}^{k} x_i≦1}. (e) C_5 = {x \in S^n | z^{T}Xz≧1, \forall z \in R^n, ||z||_2 = 1}. 3. (22%) True and False. The score you get in this section is s = max{0, 2n_c - 4n_w} where n_c and n_w are the numbers of correct answers and wrong answers (not including those left blank). (a) If C \subseteq R^n is an affine set. Then 0 \in C. (b) A halfspace can be expressed as the intersection of two hyperplanes. (c) A polyhedron is the intersection of a finite number of hyperplanes and hal- fspaces, and therefore is always a convex set. (d) An ellipsoid, defined as {x | (x - x_c)^{T}P^{-1}(x - x_c)≦1} for any giv- en x_c \in R^n and P \in S_{++}^n is a convex set whose affine dimension is n. (e) If a function f : R^n -> R is convex and concave at the same time, then it is also an affine function. (f) Every norm on R^n is convex. (g) The epigraph of a function f : R^n -> R, defined as epi f = {(x,t) | x \in dom f, f(x)≦t}, is a convex set if and only if f is a convex function. (h) Let x_1, x_2 \in R^n. Then the set {x_1, x_2} is a convex set if and only if x_1 = x_2. (i) Suppose f : R^n -> R is twice differentiable. Then, f is strictly convex if and only if its Hessian is always positive define (i.e., ▽^2f(x) \succ 0, \forall x \in R^n). (j) The α-sublevel set of a function f : R^n -> R, defined as C_α = {x \in dom f | f(x)≦α}, is a convex set if and only if f is a convex function. (k) A function f : R^n -> R is convex if and only if \forall x \in dom f, v \in R^n, the function g(t) = f(x + tv) is convex on dom g = {t | x + tv \in dom f}. 4. (18%) Determine whether each of the following sets is a convex function, qu- asi-convex function, concave function. Write your answer as a table of 6 rows and 3 columns, with each entry being T (yes), F (no), or left blank. You don't have to write down the proofs. The score you get in this section is s = max{0, n_c - 2n_w} where n_c and n_w are the numbers of correct answers and wrong answers (not including those left blank). (a) f_1 : R^3 -> R, f_1(x) = x^{T}Px + q^{T}x + r where P \in S_{++}^3. (b) f_2 : R -> R, f_2(x) = logx with dom f_2 = R_{++}. (c) f_3 : S_{++}^3, f_3(x) = log(det(I + X)). (d) f_4 : R^2 -> R, f_4(x) = (a^{T}x + b) / (c^{T}x + d) where a = [6 5]^T, b = 4, c = [3 2]^T, and d = 1, with dom f_4 = {x \in R^2 | c^{T}x + d > 0}. --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.241.104.253 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1619566534.A.9BB.html







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:BabyMother站內搜尋

TOP