NTU-Exam 板


LINE

課程名稱︰量子力學一 課程性質︰物理系系定選修 課程教師︰蔣正偉 開課學院:理學院 開課系所︰物理學系 考試日期(年月日)︰2019年12月4日 考試時限(分鐘):未知 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 註:為明確表示數學式,部分較難以圖像表示之部分以\LaTeX碼表示 ex. \vec{a} 表 a向量, a^{\dagger} 表a dagger, \sart{a}表根號a, \hbar 表 hbar, \int^{b}_{a}表自a積分至b 12/04/2019 PHYS7014 Quantum Mechanics I ─ Second Midterm Exam INSTRUCTIONS This is an open-book, 120-minute exam. Your are only allowed to use the main textbook (by Sakurai and Napolitano) and your own handwritten notes. Only derived results in the main text of Sakurai and Napolitano up to the range of this exam (i.e., Chapter 2) can be used. The score of each sub-problem is indicated by the number in square brackets. To avoid any misunderstanding, ask if you have any queations about the problems or notations. In your answers, define clearly your notations if they differ from those in the main textbook. Note that we also do not distinguish the notation of an operator from that of its corresponding variable. You may find some of the following formulas useful: \int^{x}\sqrt{1-u^2}du=1/2(x\sqrt(1-x^2}+arcsin(x))+C \int_{-∞}^{∞}exp(-(ax^2+bx+c))=(π/α)^(1/2)exp((b^2-4ac)/4a)) (a>0) PROBLEMS 1.[70 points] Consider a one-dimensional simple harmocis oscillator (SHO) with the potential given by V(x)=1/2mω^2x^2. The n-th energy level is denoted by |n>. Recall that a } = 1/\sqrt{2}(x/x_0π±ix_0/\hbar p) a^{\dagger} } a } = {\sqrt{n}|n-1> a^{\dagger} } {\sqrt{n+1}|n+1> , where x_0≡\sqrt{\hbar/(mω)}. Also, recall that the position and momentum operators in the Heisenberg pircture for the SHO are solved to be {x(t)=x(0)cos(ωt)+p(0)/(mω)sin(ωt), {p(t)=-mωx(0)sin(ωt)+p(0)cos(ωt). (a)[10] Work out the matrix forms of the following operators: a, a^{\dagger} , x and p in the Schrodinger picture. Show at least the upper left 4×4 sub-matrix. (b)[10] Calculate (Δx)(Δp) for the n-th level state, where for your convenience Δa≡\sqrt{<A^2>-<A>^2}. (c)[10] Calculate the expectation values of kinetic and potential energy of the n-th level state, and show that they satisfy the virial theorem. (d)[10] Compute the expectation values of x(t) and p(t) for the n-th level state. Explain physically what your results mean. In particular, are they consistent with the classical picture of an oscillator? (e)[10] Use the WKB approximation method to work out the eigenstate energies. Define the coherent state, denotes by |α>, satisfying a|α>=α|α> with the normalization <α|α>=1 (f)[10] Derive the normalized coherent state in the basis of {|n>}. (g)[10] Explain what kind of quantity the eigenvalue α can be, and whether or not one can set it to be real at all times. 2.[10 points] Consider a one-dimensional quantum mechanical problem of a particle with a time-independent Hamiltonian H. In the path integral calculation, we have shown in class that for a particle with a general Hamiltonian H(p,x): <x_{i+1}|H|x_i>=\int^{∞}^{-∞}(dp/(2π\hbar))H(p,\bar{x}_i)× exp(i/\hbar p(x_{x+1}-x_i)) where x_i and x_{i+1} denote respectively the positions of the particle at two infinitesimally separated moments t_i and t_{i+1}. Explain why one should use \bar{x}_i=(x_i+x_{i+1})/2 instead of x_i or x_{i+1}. 3.[20 points] Consider a particle of electrin charge Qe and mass m in an electromagnetic potential, described by the Hamiltonian H=Π^2/(2m)+Qeφ with Π=\vec{p}-Qe/c\vec{A}, where φ(\vec{x}) and \vec{A}(\vec{x}) are time-independent scalar and vector potentials, respectibely. Use the Heisenberg pircture throughout this problem. (a)[10] Explain whether d\vec{x}/dt and \vec{x} can commute with each other. If so, prove it. If not, give a simple example. (b)[10] Derive the quantum mechanical version of the Lorentz force: m(d^\vec{x}/dt^2)=dΠ/dt=Qe[\vec{E}+1/(2c)× (d\vec{x}/dt×\vec{B}-\vec{B}×d\vec{x}/dt)]. --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.102.30 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1576045997.A.5CF.html







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Gossiping站內搜尋

TOP