作者cosmosp (cosmosp)
看板NTU-Exam
標題[試題] 100下 周青松 微積分甲下 期末考
時間Thu Jul 5 00:10:04 2012
課程名稱︰微積分甲下
課程性質︰必修
課程教師︰周青松
開課學院:管理學院、生農學院、理學院
開課系所︰工管系管系科管組、生工系、生機系、地質系
考試日期(年月日)︰2012/06/18
考試時限(分鐘):110分鐘
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
I.
A.(10%)Find f(t) given that
f'(t)=2cost i - tsin(t^2) j + 2t k and f(0)=i+3k
B.(10%)Find f(t) given that f'(t)=αf(t),where α is a real number, and f(0)=c.
II.
A.(10%)Find ▽(sin r) and ▽(e^r), where r = (x^2 + y^2 + z^2)^(1/2).
B.(10%)Set f(x,y) = 1 + x^2 +y^2, find the points (x,y) at which ▽f(x,y)=0.
III.
A.(10%)Find that directional derivative of (x,y,z)=Ax^2 + Bxyz + Cy^2
at the point P(1,2,1) in the direction of Ai + Bj + Ck.
B.(10%)Find that directional derivative of (x,y,z)=e^x cosπyz at the point
P(0,1,1/2) in the directions parallel to the line in which the planes
x + y - z = 5 and 4x - y - z = 2 intersect.
IV.
A.(10%)Evaluate
∫∫e^-(y^2/2) dx dy, where Ω is the triangular region bounded
Ω by the y-axis, 2y = x, y = 1.
B.(10%)Evaluate
∫∫∫y^2 dx dy dx, where T is the tetrahedron in the first-octant
T solid bounded by the coordinate planes and the
plane 2x + 3y + z = 6.
V.
A.(10%)Calculate the volume within the cylinder x^2 + y^2 = b^2 between the
planes y + z = a and z = 0 given that a≧b>0.
B.(10%)Find the mass of a solid right circular cylinder of radius r and
height h given that the mass density directly proportional to the
distance from the lower base.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.170.197.249
※ 編輯: cosmosp 來自: 118.170.197.249 (07/05 00:10)