NTU-Exam 板


LINE

課程名稱︰離散數學 課程性質︰資訊系選修 課程教師︰陳健輝 開課學院:電資學院 開課系所︰資訊系 考試日期(年月日)︰2012/05/28 考試時限(分鐘):120 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Examination #2 (範圍: Algebra) 1. Prove that if n^2 is even, then n is even, based on the logic of p→q <=> ┐q → ┐p. (10%) 2. The following are some binary relations on A = {1, 2, 3, 4}. R_1 = {(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (4,2), (4,3)}. R_2 = {(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,4), (2,3), (4,2)}. R_3 = {(1,1), (4,4), (1,2), (1,3), (1,4), (2,3), (4,2), (4,3)}. R_4 = {(1,2), (1,3), (1,4), (2,3), (4,2), (4,3)}. R_5 = {(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (2,3), (4,2), (4,3)}. (a) Which are total orderings? (3%) (b) Which are partial orderings, but not total orderings? (3%) (c) For each of (b), list all topological orders on A. (4%) 3. Let A = {1,2,3,4,5,6,7}, and define a binary relation R as follows: (x,y)∈R if and only if 3 | (x-y). (a) Show that R is an equivalence relation on A. (6%) (b) Determine the equivalence classes induced by R. (4%). 4. Show that the following two logic circuits are functionally equivalent, i.e., they produce the same output, when fed with the same input. (10%) _ _ _ _ _ _ _ _ _ f(w,x,y,z) = w x y z + w x y z + w x y z + w x y z + w x y z _ _ _ + w x y z _ _ _ _ _ _ f(w,x,y,z) = w x z + w x y + w x y + w x z (原圖請參閱老師講義 p.67 以及 p.69 上圖) http://inrg.csie.ntu.edu.tw/discrete2012/course/Part_2_Algebra.pdf 5. The following two tables make (R, + .‧) into a ring, where R = {s,t,x,y}. (a) What is the zero of R? (2%) (b) What is the additive inverse of t? (2%) (c) Is R communicative? Why? (2%) (d) Does R have a unity? Why? (2%) (e) Find all proper zero divisors of R. (2%) + | s t x y ‧| s t x y ----+-------------- ----+-------------- s | y x s t s | y y x x t | x y t s t | y y x x x | s t x y x | x x x x y | t s y x y | x x x x | | 6. The following is a proof for the fact that a finite integral domain (R, + ,‧) is a field. Suppose R = {d_1, d_2, ..., d_n}, where d_i's are distinct. Let a∈R and a≠z. We have a‧d_1, a‧d_2, ..., a‧d_n all distinct, and hence {a‧d_1, a‧d_2, ..., a‧d_n} = R. Since u∈R, we have u = a‧d_k = d_k‧a for some k, i.e. a^{-1} = d_k∈R. (1) Why is R = {d_1, d_2, ..., d_n} supposed? (2%) (2) Why are a‧d_1, a‧d_2, ..., a‧d_n all distinct? (3%) (3) Why {a‧d_1, a‧d_2, ..., a‧d_n} = R? (2%) (4) Why is the proof complete, as a^{-1} = d_k∈R is derived? (3%) 7. Find (1) [21]^{-1} in Z_{65} and (2) 1 <= x <= 64 so that [40]‧[x] = [0] in Z_{145}. (10%) ┌ a 0 ┐ | 8. Let S = { │ │ | a∈R }, where R is the set of real numbers. Then, └ 0 a ┘ | S is a ring under matrix addition and multiplication. Prove that R is isomorphic to S. (10%) 9. Suppose that ( G ,‧) is a group with a generator a and |G| = n. The following is an incomplete proof for that a^k is also a generator for G if and only if gcd(k,n) = 1, where k is a positive integer. Please provide the missing parts, i.e., "--- (1) ---" and "--- (2) ---". (10%) (if) For any b∈G. Suppose b = a^r for some integer r. gcd(k,n) = 1 => ks + nt = 1 for some integers s and t => b = a^4 = a^{r(ks+nt)} = --- (1) --- i.e., b can be generated by a^k. (only if) G = <a^k> => a = (a^k)^s for some integer s => a^{1 - ks} = e => --- (2) --- => gcd(k,n) = 1 10. Let G be a group with subgroups H and K. If |G| = 660, |K| = 66, and K ⊂ H ⊂ G, what are the possible values for |H|? (10%) --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.30.81
1F:推 peter506g :看到這帳號先拜總沒錯<(_ _)> 05/28 14:13
2F:推 chichiwater :好快 原本想來PO的說 <(_ _)> 05/28 17:12
用pietty打字好蛋疼... ※ 編輯: suhorng 來自: 61.217.33.159 (05/28 19:41)
3F:推 cebrusfs :朝聖 05/29 01:43
4F:推 roymustang :看到原PO不拜說不過去<(_ _)> 05/31 08:17
5F:推 s864372002 :看到原PO不拜說不過去<(_ _)> 05/31 11:33
6F:推 awy777 :看到原PO不拜說不過去<(_ _)> 06/05 22:45
7F:推 kevin4314 :看到原PQ不拜說不過去<(_ _)> 06/05 23:20
8F:推 coldman519 :看到原PQ不拜說不過去<(_ _)> 06/05 23:29
9F:推 yanghowa :看到原PO不拜說不過去<(_ _)> 06/06 00:14







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Gossiping站內搜尋

TOP