作者fei6409 (fei6409)
看板NTU-Exam
標題[試題] 100下 陳君明 密碼學 第一次小考
時間Tue Apr 3 00:05:41 2012
課程名稱︰密碼學
課程性質︰選修
課程教師︰陳君明
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰2012/3/21
考試時限(分鐘):40 min
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
s = ____ = 12 - "the last digit of your ID", 3 <= s <= 12
1) Consider the group G = (Z17*, ×mod 17)
a) s^-1(the multiplicative inverse of s) is ____
b) o(s) (the order of s) = ____
c) The index [G, <s>] = ____
d) Explain why G is a cyclic group.
2) Consider the homomorphism f:(Z16, + mod 16) →(Z17*, ×mod 17), defined by
f(1) = s.
a) f(0) = ____ b) f(2) = ____ c) Is f an isomorphism? Explain.
3) |GL2(Z17)| = ____, |SL2(Z17)| = ____
4) Consider the sumtric group S4
a) |S4| = ____
b) ╭1 2 3 4╮
│ │= ____
╰3 1 4 2╯
c) ╭1 2 3 4╮ ╭1 2 3 4╮
│ │.│ │= ____
╰3 1 4 2╯ ╰2 1 4 3╯
5) Which rins are integral domains? ____
a) Z b) Z6 c) Z7 d) Z[x]/<x^2+1> e)Z[x]/<x^2-1>
6) Suppose H is a subgroup of G, prove that two left cosets g1H = g2H if and
only if (g1^-1)g2 屬於 H
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.160.163.172
1F:推 rod24574575 :你有把題目照下來喔... 04/03 07:35
2F:推 tsf73 :是啊 我有 04/03 11:54
3F:推 yuricon :樓樓上rod推 04/03 21:55
4F:推 s864372002 :樓下jmc: 04/08 13:15