NTU-Exam 板


LINE

課程名稱︰演算法設計與分析 課程性質︰必修 課程教師︰蘇雅韻 開課學院:電資學院 開課系所︰資工系 考試日期(年月日)︰2012.1.13 考試時限(分鐘):170分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題: ˙ Do not open this booklet until you are directed to do so. Read all the instructions on this page. ˙ There are a total of 11 pages including this page. Please make sure you have all of them. ˙ This exam is closed book. You may use one handwritten A4 sheet. ˙ Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite known results. ˙ Do not spend too much time on any one problem. Read them all through first, and attack them in the order that allows you to make the most progress. ˙ Show your work, as partial credit will be given. You will be graded not only on the correctness of your answer, but also on the clarity with which you express it. Be neat. ˙ When asked to give an algorithm, more credits will be given to faster algorithms given the algorithm is correct. ˙ Good luck! Problem 1 Minimum spanning tree [20 points, 3 points each for (a)-(c), 11 points for (d) and (e)] For parts (a), (b), and (c), consider the following weighted graph with 9 vertices and 14 edges. Note that the edge weights are distinct integers between 1 and 14. ┌─┐ 2 ┌─┐ │B│───────│G│ ╱└─┘╲ ╱└─┘ 6╱ 14│ 7╲┌─┐╱8 │11 ╱ │ │E│ │ ┌─┐ 13 ┌─┐ 1 └─┘ ┌─┐ │A│───│C│───┼───│H│ └─┘ └─┘╲  ̄╲ └─┘ ╲ ╲ 12╲ │4 10╲ ╲5 ╲ │ ╲┌─┐ 9 ╲___┌─┐ │D│───────│I│ └─┘╲ └─┘ 3╲┌─┐ │F│ └─┘ (a) Complete the sequences of edges added to a MST in the order that Kruskal's algorithm includes them. 1  ̄  ̄  ̄  ̄  ̄  ̄  ̄ (b) Suppose edge (E, F) of weight w is added to the graph. How would you assign the value of w so that edge (E, F) is included in a MST? (c) The weighted graph is repeated here for reference. Complete the sequences of edges to a MST in the order that Prim's algorithm includes them. Start Prim's algorithm from vertex A. 6  ̄  ̄  ̄  ̄  ̄  ̄  ̄ (d) Suppose you know the MST of a weighted graph G. Now, a new edge (u, v) of weight w is inserted into G to form a weighted graph G'. Design an O(V) time algorithm to determine if the MST in G is also an MST in G'. You may assume all edge weights are distinct. Your answer will be graded for correctness, clarity, and conciseness. (e) Explain briefly why your algorithm takes O(V) time. Problem 2 Short answer questions [8 points, 4 points each] 1. Circle the choice that describes a use of the following code. ┌───────────────┐ │for i = 1 to |G.V|-1 │ │ for u = 1 to |G.V|-1 │ │ for v in G.adj(u) │ │ if v.d > u.d + w(u,v) │ │ v.d = u.d + w(u,v) │ └───────────────┘ (a) To find the longest path in a weighted graph (b) To compute the MST of a weighted graph (c) To topologically sort a digraph (d) To find shortest path in a weighted graph (e) To implement DFS in a weighted graph 2. Given the weighted graph and the initial distance matrix below, what is the value d_35 in matrix D^(2) ┌─┐ │2│ ↗└─┘↖ ┌ 0 3 8 ∞ -4 ┐ 3╱ ││ ╲4 │ │ ╱ 7││1 ╲ │ ∞ 0 ∞ 1 7 │ ┌─┐ ││ ┌─┐ (n) │ │ │1│ ──┼┼─→ │3│ D = │ ∞ 4 0 ∞ ∞ │ └─┘↖ ││ 8 └─┘ │ │ │ 2╲ ││ ↑ │ 2 ∞ -5 0 ∞ │ │ ╳ ╲ │ │ │ -4│ ↙ ╲ ↘ │-5 └ ∞ ∞ ∞ 6 0 ┘ │ ┌─┐ ┌─┐ │ └→│5│→│4│─┘ └─┘6 └─┘ (a) 5 (b) 11 (c) ∞ (d) 3 (e) None of the above Problem 3 True or False and Justify. [12 points, 3 points each] For each question, circle either True or False. Then, give a brief justification for your answer. Your question will be evaluated based on the justification and not just the True/False answer alone. 1. T F Dijkstra's algorithm can be implemented with binary-heap or Fibonacci-heap. Given a sparse graph where |E| = θ(|V|), the Fibonacci-heap implementation is be asymptotically faster than the binary-heap implementation. 2. T F Let G = (V,E) be a weighted graph and let T be a minimum spanning tree of G. Then, for any pair of vertices s and t, the path in T must be a shortest path in G. 3. T F Given a graph G = (V,E) with distinct weight on edges and a subset of vertices S ≦ V. Let edge (u, v) be the minimum cost edge between any vertex in S and any vertex in V-S. Then, the minimum spanning tree of G must include the edge (u, v). 4. T F Let G = (V,E) be a directed graph with negative-weight edges, but no negative-weight cycles. Then, one can compute all shortest paths from a source vertex s ∈ V to all vertices v ∈ V faster than Bellman-Ford using the technique of reweighting. Problem 4 Maximum-flow [20 points, 10 points for 1 (3/3/4) and 2 (5/5).] 1. The figure describes a flow assignment in a flow network. The notation a/b describes a units of flow in an edge of capacity b. Please (1) briefly state the Max-flow min-cut theorem. (2) Draw the minimum cut in the figure (3) Explain whether the flow assignment in the figure is maximum flow using the Max-flow min-cut theorem. ┌─┐ 4/5 ┌─┐ │a│──→│c│ ↗└─┘ └─┘╲3/6 1/4╱ ↑ ↗│ ╲ ┌─┐╱ │ ╱ │ ↘┌─┐ │s│ 3/7│ ╱ │1/4 │t│ └─┘╲ │ ╱0/2 │ ↗└─┘ 6/6╲ │╱ ↓ ╱ ↘┌─┐ ┌─┐╱4/4 │b│──→│d│ └─┘ 3/3 └─┘ 2. Suppose you have an algorithm A to solve the maximum flow problem. That is, given a directed graph G, source node S, and sink node C, A will return the value of maximum flow. Today is the last day of this semester. After the exam, lots of people want to go outside, but every place can accommodate a limit number of people. So, you want to write a program to decide the maximum number of people that can go outside. Given N persons {P_l, P_2, … , P_N}, the capacity of M places {C_1, C_2, … , C_M}, and an N*M matrix K, ┌ 1, if person P_i is willing to go to the place j whose capacity │ is C_j K_ij = ┤ └ 0, otherwise Please (1) given an algorithm that can determine the maximum number of people that can go outside and (2) explain why your algorithm is correct. More credits will be given to faster algorithms, provided that the analysis of the algorithm is correct. (HINT: You can use algorithm A in your algorithm) Problem 5 Shortest paths [15 points, 6 and 9 points each] 1. Given a DAG, please describe how to use topological sort to find shortest paths. 2. We know that topological sort may output results of more than one kind of ordering. Please explain why this does not affect the results of finding shortest paths? (Hint: please focus on the case that if two vertices can change their order but both orderings are legal topological ordering, why this changing won't affect the answer.) Problem 6 [10 points, 5 points each] An edge disjoint path is that any two path with no sharing edges. Given a directed graph, a source s and destination t, please (1) find k edge disjoint path from s to t, and (2) briefly explain why your algorithm is correct. (where 0 < k < maximum edge disjoint path). More credit will be given to faster algorithms, provided that the analysis of the algorithm is correct. Problem 7 NP-completeness [20 points, 4, 6, and 10 points for 1, 2, and 3 respectively] 1. A problem A has a polynomial reduction to a problem B, and B has a polynomial reduction to a problem C. Suppose B is in NP-complete. (1) What can you say about A? (Note: there may be multiple correct answers) (a) Nothing (b) It's in P (c) It's in NP (d) It's NP-complete (e) It's NP-hard (2) What can you say about C? (Note: there may be multiple correct answers) (a) Nothing (b) It's in P (c) It's in NP (d) It's NP-complete (e) It's NP-hard 2. SAT is the decision problem that takes as input a Boolean formula and returns YES if the formula can be satisfied, NO if it cannot. (1) What can you say about SAT? (Note: there may be multiple correct answers) (a) It's in P (b) It's in NP (c) It's NP-complete (d) It's NP-hard (e) None of the previous answers (2) Assume P = NP, What can you say about SAT? (Note: there may be multiple correct answers) (a) It's in P (b) It's in NP (c) It's NP-complete (d) It's NP-hard (e) None of the previous answers (3) Assume P != NP, What can you say about SAT? (Note: there may be multiple correct answers) (a) It's in P (b) It's in NP (c) It's NP-complete (d) It's NP-hard (e) None of the previous answers 3. Assume there is an algorithm SOLVE_SAT to solve SAT that takes time T(n) where n is the number of variables. SOLVE_SAT returns YES if the input formula of size n can be satisfied and NO if the input cannot be satisfied. Write in pseudocode an algorithm that utilizes SOLVE_SAT to return an assignment of the formula (when it exists) that takes time O(nT(n)). [Note: T is an increasing function] Problem 8 Feedback [Happy Chinese New Year bonus: 10 points] Please tell us what you think about this class! Please write down (1) things you like about this class and (2) things you would like to see we do that can help you learn better. --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.230.115.15 ※ 編輯: rod24574575 來自: 61.230.115.15 (01/30 07:13)
1F:→ andy74139 :已收錄至資訊系!! 01/30 10:57







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:iOS站內搜尋

TOP