作者twc94 (蔡哲)
看板NTU-Exam
標題[試題] 100上 陸駿逸 化學數學 期中考
時間Sun Nov 13 00:38:03 2011
課程名稱︰化學數學
課程性質︰必修
課程教師︰陸駿逸
開課學院:理學院
開課系所︰化學系
考試日期(年月日)︰100/11/08
考試時限(分鐘):110min (延長為130min)
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
1. Given a hermitian matrix A as below ┌ ┐
│ 1 1-i │
A= │ │
│ 1+i 2 │
└ ┘
(a) Calculate its normalized eigenvectors│v1>,│v2> and the eigenvalues a1,a2
(b) Calculate the matrices│v1><v1│and│v2><v2│
(c) Show that│v1><v1│+│v2><v2│=1
(d) Show that a1│v1><v1│+a2│v2><v2│=A
(e) An arbitrary vector│u>=┌ ┐ can be expressed as u1│v1>+u2│v2>,
│ 2i │
│ │
│1+i │
└ ┘
calculate u1,u2.
2. Prove that the eigenvalues of a hermitian matrix are always real.
3. In the H atom energy level problem, we can get the 3d orbitals.
-r -r -r
ψxy=xye ψyz=yze ψxz=xze
2 2 2 2 -r 2 2 2 2 -r 2 2 2 2 -r
ψ(x -y )=(x -y )e ψ(y -z )=(y -z )e ψ(x -z )=(x -z )e
(上面的=都是"正比於")
2 2 2
where r=√(x +y +z )
Choose 5 linear independent orbitals, and use the Gram-Schmidt process to
construct an orthogonal basis. You may need the following integrals:
∞ ∞ ∞ 2 2 -2r
∫ ∫ ∫ x y e dxdydz=3π/2
-∞ -∞ -∞
∞ ∞ ∞ 4 -2r
∫ ∫ ∫ x e dxdydz=9π/2
-∞ -∞ -∞
2
4. Consider the vector space of polynomial with power less than 5. Take{1,x,x ,
3 4
x ,x } as a basis, construct the matrices correspond to the linear operators
^ d ^ d
A = x ── B = ──
dx dx
2
^ d ^^ ^ d d ^^
C = x ── = AB D = ── x ── = BA
2 dx dx
dx
^ iA
5. Let A=(√3)σx +σy where σx =┌ ┐ σy =┌ ┐ Calculate e
│0 1│ │0 i│
│ │ │ │
│1 0│ │-i 0│
└ ┘ └ ┘
6. Solve the coupled linear ODE x'(t)=2y(t)+x(t), y'(t)=2x(t)+4y(t) with the
initial conditions x(0)=1, y(0)=2.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.243.172
※ 編輯: twc94 來自: 140.112.243.172 (11/13 00:40)
1F:推 Killua7877 :!! 11/13 23:24
2F:推 shanyanyu :推原PO超帥8-) 11/14 01:55