作者jech801127 (cosmos)
看板NTU-Exam
標題[試題] 99下 張秀瑜 微積分乙下 第二次期中考
時間Wed Jun 22 00:04:59 2011
課程名稱︰微乙
課程性質︰必修
課程教師︰張秀瑜
開課學院:理學院
開課系所︰經濟/管院/地理
考試日期(年月日)︰2011/5/24
考試時限(分鐘):110分鐘
是否需發放獎勵金:請~
(如未明確表示,則不予發放)
試題 :
1.(24%)Find the following partial derivatives. Assume all functions
are differentiable.
x ∂f
(1)f(x,y)=∫cos(t^2)dt. find ___
y ∂x
∂u
(2)u(x,t)=f(x+at)+g(x-at). find ___
∂t
∂z ∂ ∂z
(3)z=f(x,y), x=rcosθ, y=sinθ, find_____ and ___(___ )
∂θ ∂r ∂x
2.(10%) If f(x,y)=(y+x^5)^1/5, find fx(0,0)
3.(15%) Let f(x,y)=tan^-1(x+2y)
(a)Explain why f is differentiable?
(b)Find the linearization L(x,y) of f at the point (1,0)
→
(c)Find Duf(1,0), where u=(√2/2, √2/2)
4.(10%) Use differentials to estimate the amount of tin in a closed tin can
with diameter 8cm and height 12cm if the tin is 0.05cm thick.
5.(12%) Find equations of
(a)the tangent line and
(b)the normal line to the surface x^2+2y^2-3z^2=3 at the point(2,-1,1)
6.(16%) Find the extreme values of f(x,y)=e^-xy on the region inside x^2+4y^2=1
7.(16%) Find the local maximum and minimum values and saddle points of
f(x,y)=2x^3+xy^2+5x^2+y^2
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.116.37.43
※ 編輯: jech801127 來自: 122.116.37.43 (06/22 00:09)
※ 編輯: jech801127 來自: 122.116.37.43 (06/22 00:48)