作者wheata (仙人指路為馬)
看板NTU-Exam
標題[試題] 99上 王金龍 微積分甲上 第九次小考
時間Thu Jun 2 22:40:13 2011
課程名稱︰微積分甲上
課程性質︰必修
課程教師︰王金龍
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰2010/12/2
考試時限(分鐘):30
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
All vectors are denoted by bold-faced letters
A. (a) Let r be a smooth curve. A particle with mass m slides down
along r under the influence of gravity F = (0, -mg).
Show that the equation of motion in the tangential direction
is (d^2 x/ d t^2) = -g(d y/d s), where s denotes the arc length,
t denotes the time and y denote the y-component of r.
(b) Suppose the curve is the cycloid
r(θ) = (a(θ + π + sinθ), -a(1 + cosθ)), θ∈[-π,π]
where a is a given constant and the particle slides down from
r(-θo), 0 < θo < π, with initial velocity 0.
Find the times the particle takes to travel from r(-θo) to r(θo).
B. We have known that if f is n times continuously differentiable
n ┌ ┐
and f(x) = Σ │ a (x^k) + R (x)│ with lim (Rn(x)/x^n) =0,
k=0└ k n ┘ x→0
(k)
f (0)
then a = ──── for k = 0,1,2,3,4,5,...,n.
k k!
Use this property and the Taylor series of sin x to find
x
the Taylor series for ∫ (sin t /t) dt in a neighborhood of x = 0.
0
C. Evaluate lim (sin x /x)^(1/x^2).
x→0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.36.101.88