作者FAlin (FA(ハガレン))
看板NTU-Exam
標題[試題] 99下 電機系 線性代數 期中考
時間Wed Apr 20 20:27:38 2011
課程名稱︰工程數學-線性代數
課程性質︰系定必修
課程教師︰馮蟻剛 馮世邁 蘇柏青 鄭振牟 林茂昭
開課學院:電機學院
開課系所︰電機系
考試日期(年月日)︰2011/04/20
考試時限(分鐘):100
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
USE OF ALLAUTOMATIC COMPUTING MACHINES IS PROHIBITED
1.If the 4x4 matrix M satisfies the following equation, then what is the value
of the det(M^3)? (10%)
┌ ┐ ┌ ┐
│1 -2 -1 2│ │4 1 -2 -1│
│0 2 1 3│ │0 8 0 0│
│0 0 -1 1│M =│7 0 2 3│
│0 0 0 4│ │8 -7 1 4│
└ ┘ └ ┘
2.Let F and G be two similar nxn matrices. Find two bases X and Y for R^n such
that [Tf] = F and [Tf] = G (10%)
X Y
3.Given two subspaces V and U of R^n, let Z = V交集U, the intersection of V
and U.
(a) Prove that Z is a subspace of R^n with dimension no greater than those
of V and U.
(b) When n=4, V = Null(A) and U = Null(B), where A and B are listed below,
find a basis for Z. (10%)
HINT: Z = { Z屬於R^4 | Az=0 and Bz=0 }
(c) When n=4, V = Col(C) and U = Col(D), where C and D are listed below,find
a basis for Z. (10%)
HINT: Z = { Z屬於R^4 | z=Cx=Dy for some x屬於R^3 and y屬於R^2}.
┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
A = │-1 0 3 1│ B = │1 1 0 1│ C = │ 0 3 6│ D = │ 7 -4│
│ 1 2 -1 5│ │1 3 2 7│ │-1 -1 -3│ │-2 1│
└ ┘ └ ┘ │ 1 -3 -5│ │-4 1│
│ 3 2 7│ │ 1 1│
└ ┘ └ ┘
4.(30%)Consider the two functions f and g defined as follows.
┌ x ┐
f:R^3→R^2, f(│ y │) = (┌ x+y+1 ┐)
└ z ┘ └ z ┘
┌ s ┐
g:R^2→R^3, g(┌ s ┐) = (│ s-1 │)
└ t ┘ └ s+t ┘
(a) Find function composition h1 = g(f(.)) and h2 = f(g(.)).Your answers
should include specifing their domains and codomains. ( 4%)
(b) Determine whether each of f,g,h1 and h2 is an onto function and whether
it is a one-to-one function
(True or false only: no explanation needed.) ( 8%)
(c) Determine whether each f,g,h1 and g2 is a linear transformation.
Explain your answers. (12%)
(d) For any of f,g,h1 and h2 that is a linear transformationm find its
standerd matrix, and determine whether the matrix is invertible.
5.(20%)Conside the matrix A =┌1 1 1 ┐屬於R^4x3
│1 a b │
│1 a^2 b^2│
└1 a^3 b^3┘
(a) Show that the column vectors of A form a linearly independent set if
and only if a不等於1,b不等於1 and a不等於b. (10%)
(b) Assume a=b不等於1. Find rank A and nullity A. (5%)
(c) Assume a不等於1,b不等於1,and a不等於b, Let ak be the kth column of A and
B ={a1,a2,a3} is an ordered basis for Col A.Let v=[0 1 a+b a^2+ab+b^2]^T
屬於R^4.Show that V 屬於 Col A, and find [v]B, the coordinate of v with
respect to the subspace Col A.
打到一半斷線的悲劇...
--
沒有伴隨著痛苦的教訓是沒意義的。
人如果不犧牲一些東西,就無法得到任何東西。
但是當超越了障礙,並且把得到的東西變成屬於自己的東西時...
人應該就能夠得到無法取代的
鋼之心靈吧。
<
Fullmetal
Alchemist>
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.113
※ 編輯: FAlin 來自: 140.112.240.113 (04/20 20:32)
1F:→ littleshen21:考卷不是交回去了? 04/20 20:34
2F:推 ly2314 :好快! 04/20 20:35
3F:→ kuoly1 :所以又是傳說中的偷領兩份考卷?? 04/20 20:38
4F:→ FAlin :工數不用交吧? 04/20 20:54
5F:→ littleshen21:電二105的有收~其他就不知道了 04/20 20:58
6F:→ FAlin :106沒收 04/20 20:59