作者hiakira (哈囉小明)
看板NTU-Exam
標題[試題] 97上 謝承熹 管理數學 期中考
時間Sat Nov 22 17:39:09 2008
課程名稱︰管理數學
課程性質︰必修
課程教師︰謝承熹
開課學院:管理學院
開課系所︰財金系
考試日期(年月日)︰97/11/10
考試時限(分鐘):160分鐘
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
Ⅰ.(49 points) Answer each of the following as true(T) or false(F).
Justify
your answer ,or you cannot get any point. Moreover,
please give your
answers in order. Thanks!
1.The set of all n×n and idempotent matrices is not a subspace of Mnn, where
Mnn is the set of all n×n matrices under usual operations of matrix addition
and scalar multiplication.
2.(Continue) The set of all n×n matrices with zero traceis not a subspace of
Mnn.
3.Suppose that S={v1,...,vm} is a set of vector in R^n. If m>n,then S is linear
dependent.
4.If A is an n×n and upper triangular matrix in which each aii≠0, then column
of A is linear independent.
5.For scalars α and a nonsingular n×n matrix A, adj(αA)=(α^n-1)adjA.
6.For each n×n matrix A, it is impossible to find a solution for n×n matrix
X in the matrix equation AX-XA=In. (Hint: Use the definition of trace.)
7.If A is a square matrix such that I-A is nonsingular, then A[(I-A)^(-1)]=[(I-
A)^(-1)]A. (Hint: Consider A(I-A)=(I-A)A.)
Ⅱ.(16 points)
╭ ╮
│1 0 0 1/3 1/3 1/3│
│0 1 0 1/3 1/3 1/3│
│0 0 1 1/3 1/3 1/3│
For the matrix A = │0 0 0 1/3 1/3 1/3│, Find A^300.(Hint: Use block
│0 0 0 1/3 1/3 1/3│
│0 0 0 1/3 1/3 1/3│
╰ ╯
multiplication and the definition of idempotent.)
Ⅲ.(10 points)
Construct a linear system of 3 equations in 4 unknowns that has x=
╭ ╮ ╭ ╮ ╭ ╮
│1│ │2│ │-3│
│0│+x2│1│+x4│ 0│ as its general solution.
│1│ │0│ │ 2│
│0│ │0│ │ 1│
╰ ╯ ╰ ╯ ╰ ╯
Ⅳ.(25 points)
╭ ╮
│1 X1 … X1 ^(n-2)│
│1 X2 … X2 ^(n-2)│ n-1
You are given det│: : … : │= Π(Xj-Xi). By applying induction
│1 Xn-1… Xn-1^(n-2)│ j>i
╰ ╯
╭ ╮
│1 X1…X1^(n-1)│
│1 X2…X2^(n-1)│ n
method, please prove that det│: : … : │= Π(Xj-Xi). (Hint: Note that
│1 Xn…Xn^(n-1)│ j>i
╰ ╯
n-2
Xn^(n-1)-Xi^(n-1)=(Xn-Xi)[Σ Xn^(n-2-k).Xi^k] for i<n.)
k=0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.134.6.107
※ 編輯: hiakira 來自: 220.134.6.107 (11/22 18:03)
1F:推 lucas12417 :已收:) 11/22 18:10