作者Maninck (我是大天才^o^/)
看板Inference
標題Re: [問題] 有趣的一題
時間Sat Dec 15 09:49:39 2007
※ 引述《tdk4 (大飛)》之銘言:
: 同學跟我說的XD
: 題目如下:
: 有一個很厲害的心理學大師
: 他自行設計了一套問卷
: 當受試者寫完這份問卷之後
: 對於任何二選一的問題他都能夠有99.999%的機率可以正確預測受試者的答案
: 這數字何來的呢?是根據這位大師之前的實驗算來的
: 在十萬名受試者中失敗的只有一例。
: 現在假設你已經做完了問卷
: 然後大師叫你進入一個房間
: 房內的桌上有兩個箱子,其中一個是透明的,一個是不透明的。
: 透明的箱內放著1000元。
: 當你還在疑惑這是怎麼一回事時,大師開口說話了:
: 「不透明的箱子內,可能放著一百萬元,也可能什麼都沒有。
: 現在你有兩個選擇,
: 選擇一、把兩個箱子內的東西都拿走
: 選擇二、你只要拿不透明的箱子
: 可是!!!其實我已經可以預測你會選哪一個了,而我也已根據我的預測做好了該做的設置
: 如果那個預測是你會選擇一的話,不透明箱子內是沒有放入東西的。
: 反之,如果那個預測是你會選擇二的話,不透明箱子內就已經放入了一百萬。 」
: 大師頓了一頓,
: 「好好考慮吧!」
: 說完他就"離開房間"了。
: 問題來了,請問這時要做那一個選擇,是對你較有利的呢?
: ---------------------------------------------------
: 會有兩種邏輯,哪一種是所謂的"正確的"邏輯呢?
我的想法很簡單,管他預測準不準,
只要他放100萬在裡面,我選一選二都拿得到
他沒放100萬在裡面,我選一選二都拿不到
但透明的1000元,只有我選一才拿得到,我當然選一
看到之前有版友寫了點數奇數100萬,偶數就槍殺
那個感覺也一樣,反正點數都固定了,要殺就殺吧!
算出來機率哪怕99%是奇數,開出來是偶數還不是得死XD
因為裡面點數都確定了,再怎麼算點數都不會變
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 125.225.76.96