作者smartlwj (實變我好愛你)
看板Grad-ProbAsk
標題Re: [理工] 線代1題
時間Fri Mar 20 12:24:57 2009
※ 引述《ILzi ( 並不好笑 )》之銘言:
: 改成原題目如下:
: n
: Let V be a subspace of R ,Alinear transformation T :V→V is said to be
: symmetric if (Tu,v)=(u,Tv) for all u,v€V.
: Here (x.y) is the dot product of vectors x and y.
: n
: A subspace W of R is said to be invariant under T if Tw€W ,for all w€W.
: (a)Show that T is symmetric if and only if the matrix representation of T
: relative to some orthonormal basis is symmetric.
: ┴
: (b)Show that if W is invariant under T, then the orthogonal complement W
: of W is also invariant under T.
: 我想請問的是第二題的部份
: 再度麻煩大家了
: 謝謝
想法: 因為結論是要証出 W-per 為 T 不變子空間
也就是說 給任意的 w in W-per 則 T(w) in W-per
因此 只要能証明出 <u,T(w)> = 0 for all u in W 即可
並注意到 W 是 T不變子空間為條件且 T是symmetric
証明: For all w in W-per, then we have
< u, w > = 0 for all u in W (by def) ---(1)
since W is T - invariant,
so for any u in W => T(u) in W
then put it in (1)
hence, < T(u), w > = 0 for T(u) in W
Now by assumption that T is symmetric,
so we obtain 0 = < T(u), w > = < u, T(w) >
i.e. T(w) is in W-per , since u is in W
thus, W-per is T-invariant subspace.
大致上應該是這樣 有錯請指正 謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.168.162.3
1F:推 ILzi:謝謝!!!! 03/20 12:29