作者s987692 (阿誠)
看板Grad-ProbAsk
標題Re: [問題] 離散請教
時間Thu Mar 19 22:09:36 2009
※ 引述《xshane831 (Shane)》之銘言:
: ※ 引述《loeooo (籃球狂)》之銘言:
: : 1. how many solutions are there to the equation X1+X2+X3+X4+X5=21,
: : where Xi, i=1,2,3,4,5 is a nonnegative integer such that 0<=Xi<=10
: : 求整數解個數跟求非負整數解個數一樣嗎? 求整數解我會
: : 但求非負要怎麼求阿?
: 這是用生成函數解法 每個X的生成函數(1+X^1+X^2+...+X^10)
: 五個就是(1+X^1+...+X^10)^5 最後求X^21的係數
: : 2. There are _________ consecutive 0s at the end of the binary expansion
: : of 70!
: : 3. there are ________4-digit decimal telephone numbers haviing one or
: : more repeated digits.
: : 4. if there are five possible grades, A,B,C,D,and F, the minimum number of
: : students required in a class to be sure that at least six will receive the
: : same grade is ________________.
2. 4=2^2 >有兩個零 8=2^3 >>有三個零
70! = [70/2](取下限)+[70/2^2](取下限)+[70/2^3](取下限)+[70/2^4](取下限)+
[70/2^5](取下限)+[70/2^6](取下限)
3. C(4,2)*C(10,1)*9*8*7 + C(4,3)*C(10,1)*9 + C(4,4)*C(10,1)*1
這題我比較不確定它題意是什麼~
4. 據鴿籠 5*5+1 = 26 至少有一個獎有六人拿~
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.42.214.37