FBaseball 板


LINE

http://www.fangraphs.com/blogs/index.php/when-samples-become-reliable by Eric Seidman - May 22, 2009 · Filed under Research One of the most difficult tasks a responsible baseball analyst must take on involves avoiding small samples of data to make definitive claims about a player. If Victor Martinez goes 4-10, it does not automatically make him a .400 hitter. We have enough information about Martinez from previous seasons to know that his actual abilities fall well short of that mark. Not everything, however, should merit a house call from the small sample size police because there are some stats that stabilize more quickly than others. Additionally, a lot of the small sample size criticisms stem from the actual usage of the information, not the information itself. If Pat Burrell struggled mightily after the all star break last season and started this season with similarly poor numbers, we can infer that his skills may be eroding. Isolating these two stretches can prove to be inaccurate, but taking them together offers some valuable information. The question asked most often with regards to small sample sizes is essentially - When are the samples not small anymore? As in, at what juncture does the data become meaningful? Martinez at 4-10 is meaningless. Martinez at 66-165, like he is right now, tells us much, much more, but still is not enough playing time. What are the benchmarks for plate appearances where certain statistics become reliable? Before giving the actual numbers, let me point out that the results are from this article from a friend of mine, Pizza Cutter over at Statistically Speaking. Warning: that article is very research-heavy so you must put on your 3D-Nerd Goggles before journeying into the land of reliability and validity. Also, Cutter mentioned that he would be able to answer any methodological questions here, so ask away. Half of my statistics background is from school or independent study and the other half is from Pizza Cutter, so do not be shy. Cutter basically searched for the point at which split-half reliability tests produced a 0.70 correlation or higher. A split-half reliability test involves finding the correlations between partitions of one dataset. For instance, taking all of Burrell’s evenly numbered plate appearances and separating them from the odd ones, and then running correlations on both. When both are very similar, the data becomes more reliable. Though a 1.0 correlation indicated a perfect relationship, 0.70 is usually the ultimate benchmark in statistical studies, especially relative to baseball, when DIPS theory was derived from correlations of lesser strength. Without further delay, here are the results of his article as far as when certain statistics stabilize for individual hitters: 50 PA: Swing % 100 PA: Contact Rate 150 PA: Strikeout Rate, Line Drive Rate, Pitches/PA 200 PA: Walk Rate, Groundball Rate, GB/FB 250 PA: Flyball Rate 300 PA: Home Run Rate, HR/FB 500 PA: OBP, SLG, OPS, 1B Rate, Popup Rate 550 PA: ISO Cutter went to 650 PA as his max, meaning that the exclusion of statistics like BA, BABIP, WPA, and context-neutral WPA indicates that they did not stabilize. So, here you go, I hope this assuages certain small sample misconceptions and provides some insight into when we can discuss a certain metric from a skills standpoint. There are certain red flags with an analysis like this, primarily that playing time is not assigned randomly and by using 650 PA, a chance exists that a selection bias may shine through in that the players given this many plate appearances are the more consistent players. Cutter avoids the brunt of this by comparing players to themselves. Even so, these benchmarks are tremendous estimates at the very least. ==簡評== 甚麼PA看甚麼數據,有0.7的正相關但還是會有bias喔 >.^ --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.114.23.222
1F:→ dkac:希望對您有幫助 http://www.94istudy.com 06/11 13:58







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Soft_Job站內搜尋

TOP