Cognitive 板


LINE

Time-keeping Brain Neurons Discovered ScienceDaily (Oct. 23, 2009) — Keeping track of time is one of the brain's most important tasks. As the brain processes the flood of sights and sounds it encounters, it must also remember when each event occurred. But how does that happen? How does your brain recall that you brushed your teeth before you took a shower, and not the other way around? For decades, neuroscientists have theorized that the brain "time stamps" events as they happen, allowing us to keep track of where we are in time and when past events occurred. However, they couldn't find any evidence that such time stamps really existed -- until now. An MIT team led by Institute Professor Ann Graybiel has found groups of neurons in the primate brain that code time with extreme precision. "All you do is time stamp everything, and then recalling events is easy: you go back and look through your time stamps until you see which ones are correlated with the event," she says. That kind of precise timing control is critical for everyday tasks such as driving a car or playing the piano, as well as keeping track of past events. The discovery, reported in this week's issue of the Proceedings of the National Academy of Sciences, could lead to new treatments for diseases such as Parkinson's disease, where the ability to control the timing of movements is impaired. Construction of time The research team trained two macaque monkeys to perform a simple eye-movement task. After receiving the "go" signal, the monkeys were free to perform the task at their own speed. The researchers found neurons that consistently fired at specific times -- 100 milliseconds, 110 milliseconds, 150 milliseconds and so on -- after the "go" signal. "Soon enough we realized we had cells keeping time, which everyone has wanted to find, but nobody has found them before," says Graybiel, who is also an investigator in MIT's McGovern Institute for Brain Research. The neurons are located in the prefrontal cortex and the striatum, both of which play important roles in learning, movement and thought control. The new work is an elegant demonstration of how the brain represents time, says Peter Strick, professor of neurobiology at the University of Pittsburgh, who was not involved in the research. "We have sensory receptors for light, sound, touch, hot and cold, and smell, but we don't have sensory receptors for time. This is a sense constructed by the brain," he says. Key to the team's success was a new technique that allows researchers to record electrical signals from hundreds of neurons in the brain simultaneously, and a mathematical way to analyze the brain signals, spearheaded by team members Naotaka Fujii of the RIKEN Brain Institute in Japan and Dezhe Jin of Penn State. Though this study focused on the prefrontal cortex and striatum, Graybiel says she expects other regions of the brain may also have neurons that keep time. Graybiel suggests that the new research could help patients with Parkinson's disease, who often behave as if their brains' timekeeping functions are impaired: they have trouble performing tasks that require accurate rhythm, such as dancing, and time appears to pass more slowly for them. Rhythmic stimuli such as tapping can help them to speak more clearly. Targeting the timekeeping neurons with neural prosthetic devices or drugs -- possibly including the natural brain chemicals dopamine and serotonin -- may help treat those Parkinson's symptoms, she says. Future studies in this area could shed light on how the brain produces these time stamps and how this function can control behavior and learning. The work also raises questions regarding how the brain interprets the passage of time differently under different circumstances. "Sometimes time moves quickly, and in some situations time seems to slow down. All of this ultimately has a neural representation," says Strick. Funding: National Eye Institute, National Parkinson Foundation, Alfred P. Sloan Foundation, and the Huck Institutes of the Life Sciences at Penn State University. Journal reference: 1. Jin DZ, Fujii N, Graybiel AM. Neural representation of time in corticobasal ganglia circuits. Proceedings of the National Academy of Sciences, Week of Oct. 19 2009 --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.4.234







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Soft_Job站內搜尋

TOP