作者slavedaeric (慘兮兮啊茫茫然)
看板Chen_C_H
標題[發問] 微積分證明
時間Fri Oct 6 18:29:58 2006
我們的微積分用的是非常怪異的Calculus for biology and medicine
我看了以後覺得寫得好爛
好像重要的東西全部都變成optional
後面還出現一堆矩陣和集合
真是神奇的東西
從開學到現在才剛剛教完A本那些基本的極限證明
可是啊 我看書上的証法和上課教的好像不太一樣耶
寫上課教的會不會被扣分啊
<課本寫的>
Use the formal definition of limits to show that lim√x=2
x→4
Sol:
We assume throughout that x>0.We need to show that for every ε>0 there
corresponds a numberδ>0 so that ∣√x-2∣<ε whenever 0<∣x-4∣<δ.
Now ∣√x-2∣<ε is equivalent to -ε<√x-2<ε 2-ε<√x<2+ε
To square all sides,we need to make sure that 2-ε≧0 and 2+ε≧0
Since ε>0 by assumption,2-ε≧0 requires us to assume 0<ε≦2.With 0<ε≦2,
squaring yields (2-ε)^2<x<(2+ε)^2
4-4ε+ε^2<x<4+4ε+ε^2
Since 4-4ε+ε^2 > 4-4ε-ε^2,we have
4-(4ε+ε^2)< x< 4+(4ε+ε^2)
or
∣x-4∣<4ε+ε^2
This suggests that if we set δ=4ε+ε^2 when 0<ε≦2,then 0<∣x-4∣<δ
implies ∣√x-2∣<ε.This is indeed the case,namely if 0<∣x-4∣<4ε+ε^2,
then -4ε-ε^2 <x-4< 4ε+ε^2, or 4-4ε-ε^2 <x-4< 4+4ε+ε^2.
This shows that (2-ε)^2<x<(2+ε)^2.Taking square roots(and observing that x>0)
2-ε<√x<2+ε or -ε<√x-2<ε,which is the same as ∣√x-2∣<ε.
When ε>2,we can choose δ=12(or any other smaller value).The value δ=12
comes from pluggingε=2 into δ=4ε+ε^2.With δ=12,if 0<∣x-4∣<12,then
-12<x-4<12 or -8<x<16 .Since x>0, we have 0<x<16,or after taking square roots,
0<√x<4,which is the same as -2<√x-2<2 or ∣√x-2∣<2<ε.
Orz,可以只寫上課教的那個嗎???
怎麼覺得他廢話一堆啊
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.129.62.77
※ 編輯: slavedaeric 來自: 140.129.62.77 (10/06 18:33)
1F:→ NTUSTKnight:原PO是用Thomas對吧? 10/06 20:57
2F:→ slavedaeric:就說是Calculus for biology and medicine啦 10/06 22:23
3F:推 sobluesk:Thomas的好像沒那麼多 10/07 00:24
4F:→ sobluesk:且Thomas的只要一起拆開,只是好像學校老師都沒教用代值ꨠ 10/07 00:24
5F:→ sobluesk:最後再取min的方法 10/07 00:26
6F:推 Lgsun:這種證明就是有兩種方法 一種是從δ出發 比較簡便 10/07 00:37
7F:推 Lgsun:就是我們上課教的,另一種是從ε出發 比較麻煩 10/07 00:38
8F:推 Lgsun:兩種都有人用,都是對的,不過考試最好寫你們老師教的那一種 10/07 00:38
9F:推 Lgsun:每個老師都教的不一樣,我大一學的方法和上課教的一致 10/07 00:39
10F:→ doingfeeling:天啊...像我這種什麼都看不懂的人... 10/07 01:20
11F:→ doingfeeling:剛進來我還以為...我竟然在BBS看到亂碼 囧a 10/07 01:20
12F:推 ramona:人家標題就已經寫了是「微積分」了咩... 10/07 06:46
13F:推 pphank:我看一用高等數學他更酷,令f(x)=L+a(x) g(x)=M+b(x) 10/07 07:07
14F:→ pphank:直接乘起來,a(x) b(x)→0就得分了...考試可以這要搞嗎? 10/07 07:09
15F:→ pphank:更正,樓樓上是''醫''用高等數學... 10/07 07:11