作者LeonYo (仆は美味しいです)
看板tutor
标题Re: [解题] 高一数学 资优集合问题
时间Fri Apr 3 07:50:05 2015
※ 引述《sunfin (远方)》之铭言:
: 1.年级:高一资优数学
: 2.科目:高中数学
: 3.章节:龙腾 第一册第一章 集合问题
: 4.题目:
∞ ∞ ∞ ∞ ∞
Let {A_n} be a sequence of sets such that ∪ ∩ A_n = ∩ ∪ A_n.
n=1 k=1 n=k k=1 n=k
Which of the following sequenses has this property?
(a) A_n = { x属於R | -1/n < x <= 1+(-1)^n }
(b) A_n = { x属於R | -(1+n)/n < x < (1+n)/n }
(c) A_n = { x属於R | -(1+n)/n <= x <= (1+n)/n }
[Sol]:
(a)
∞ ∞ ∞
A_1 = (-1 , 0] ∩ A_n = [0,0], ∪ ∩ A_n =[0,0]
A_2 = (-1/2, 2] n=k k=1 n=k
A_3 = (-1/3, 0]
A_4 = (-1/4, 2] ∞ ∞ ∞
A_5 = (-1/5, 0] ∪ A_n = (-1/k, 2], ∩ ∪ A_n =[0,2]
A_6 = (-1/6, 2] n=k k=1 n=k
This sequence has no such property.
(b)
∞ ∞ ∞
B_1 = (-2 , 2 ) ∩ B_n = [-1,1], ∪ ∩ B_n =[-1,1]
B_2 = (-3/2, 3/2) n=k k=1 n=k
B_3 = (-4/3, 4/3)
B_4 = (-5/4, 5/4) ∞ k+1 k+1 ∞ ∞
B_5 = (-6/5, 6/5) ∪ B_n = (---,---), ∩ ∪ B_n =[-1,1]
B_6 = (-7/6, 7/6) n=k -k k k=1 n=k
This sequence has this property.
(c)
∞ ∞ ∞
C_1 = [-2 , 2 ] ∩ C_n = [-1,1], ∪ ∩ C_n =[-1,1]
C_2 = [-3/2, 3/2] n=k k=1 n=k
C_3 = [-4/3, 4/3]
C_4 = [-5/4, 5/4] ∞ k+1 k+1 ∞ ∞
C_5 = [-6/5, 6/5] ∪ C_n = [---,---], ∩ ∪ C_n =[-1,1]
C_6 = [-7/6, 7/6] n=k -k k k=1 n=k
This sequence has this property.
这的确是 limsup 与 liminf
但只要对集合有基本的认识,老师都应该能看得懂并作出这题的答案
要让学生知道这题目在干嘛很简单
就像我上面作的事情,一项一项带进去给学生看,一项一项推导就好了
「看不懂数列在干什麽,就带个几项进去看看」
这件事是一定要教给学生的
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 114.42.229.80
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/tutor/M.1428018607.A.FD9.html
1F:→ LeonYo: 如果你不懂的点是先交再联还是先联再交... 04/03 07:52
2F:→ LeonYo: 与f(g(x))般的函数比较或许能有感觉... 04/03 07:53
3F:→ LeonYo: 好几层的summationΣΣΣ有看过吗? 04/03 07:53
4F:→ LeonYo: 另外很好奇在隔壁战的火热的快乐大不知道如何看待本题... 04/03 07:56