作者Eliphalet (真系废到冇朋友)
站内trans_math
标题Re: [考古] 100成大
时间Tue Jul 3 19:38:10 2012
※ 引述《ny37594133 (ny3759413)》之铭言:
: Find the points in the curve 17x^2+12xy+8y^2=100 that are closet to and
: farthest away from the origin.
: 麻烦帮帮我解这题!!
这个可以动一点手脚(1) 或者透过隐函数微分(2)
(1) 考虑 矩阵
M = [17,6;6,8] => eigvalues 5, 20
对应的 eigenvectors 1/sqrt(5)*[1,-2]^T := v_1
1/sqrt(5)*[2,1]^T := v_2
=> 透过 e_1 = sqrt(5)/5 * v_1 + 2*sqrt(5)/5 * v_2
e_2 = -2*sqrt(5)/5 * v_1 + sqrt(5)/5 * v_2
得到 5 * v_1^2 + 20 * v_2^2 = 100
令椭圆的参数式 然後下去解
(2) 假定 y= y(x)
=> s^2(x) = x^2 + y^2
=> 2s * s' = 2x + 2y * y'
-x
当 s' = 0 => y' = -----
y
-17 x - 6y
另外 y' = -----------------
6x + 8y
=> 当 s' = 0 , (2x+y)(x-2y) = 0
=> x = 2y 或 x = -y/2
带入曲线得4点 (-2,-1), (2,1)
(2,-1), (-2,1)
10
当 s 不可微 => y = 0 => 带入曲线得 x = +/- --------------
sqrt(17)
所以和原点距离最长和最短的距离是 10/sqrt(17) , 1/sqrt(5)
有错请指正
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 203.101.240.116
1F:→ Eliphalet:或如推文用 Lagrange multiplier203.101.240.116 07/03 19:42
2F:→ Eliphalet:太久没做这类题目了 抱歉203.101.240.116 07/03 19:43
3F:推 ny37594133:感觉用Lagrange比较简单 114.27.65.233 07/04 13:49
4F:推 keepole:...恩...我觉得差不多...我用lagrange 解 111.249.67.87 07/05 22:01