作者znmkhxrw (QQ)
看板trans_math
标题Re: [微分] 关於这题的证明
时间Sat Nov 26 01:39:54 2011
※ 引述《ghost17612 (就是要ROCK)》之铭言:
: 若f(x)定义於 x 属於 R 且满足
: f(x+y)=f(x)f(y)
: 当f(x)在X属於R可微分且f(0)不等於0
: 求证 f'(a)=f(a)f'(0) a属於R , 利用f'(a)的定义
: 感谢!!
1. f(0+0)=f(0)f(0)
=> f(0)=(f(0))^2
Since f(0) =/= 0 , so dividing f(0) , we have f(0)=1
2. Since f'(0) exists
f(0+h)-f(0)
so lim ───── exists
h→0 h
f(h)-1
i.e. lim ──── exists and equals to f'(0)
h→0 h
3. For a€Real number
f(a+h) - f(a) f(a)*f(h)-f(a) f(a)*(f(h)-1)
─────── = ─────── = ─────── ---(*)
h h h
f(h)-1
Since lim ──── = f'(0)
h→0 h
so (*) goes to f(a)f'(0) as h→0
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 114.25.189.83
1F:推 ghost17612:GREAT 对捏!! 感谢!! 203.73.6.189 11/26 01:41